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ABSTRACT

-

Recent experimental studies stronglyssuggest that the hairpin
vortex plays an important,and;possibly dominant, role in the dynamics
of turbulent flows near walls. - In this study, various aspects of the
motion of hairpin vortices near solid walls are addressed -on a theo-
retical basis. In particular the following topics are of interest:
(1) 'the nature of the evolution of hairpin vortices in a shear flow ;
(2) the type of flow induced near a wall by a convected hairpin
vortex; (3) the character of the viscous response near a wall to the
hairpin vortex motion and (4) the nature of the interaction of two -
hairpin vortices.

In the first phase of this study;'p numerical procedure is
developed to allow the accurate evaluation of the trajectory of a
three-dimensionat> vortex for vortices having small cores. The

integration method is based on a numerical approximation to the

Biot-Savart integral; most existing vortex calculation methods have
severe stability problems for vortices with small cores. The-
stability problem §s overcome with the present method and the tech-
nique is applied to compute the evolution of convected vortex loops
\ and hairpin vortices, both in a uniform flow and in a shear flow
above a wall. For the case ofbhairpin vortices evolving in a shear
flow, a regenerative process is observed wherein secondary hairpin
vortices form outboard of the original hairpin vortex in a manner

consistent with experimental observations. Calculations for two
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“hairpin vortices, which are initially close to one another in a
- shear flow, show that the vortices interact in a manner so-as' to

. reinforce one another. Simulations are carried out to compute the

» evolution of hydrogen bubble lines as a hairpin vortex passes and

g these - show that such vortices can give rise to wall layer streaks.

? In the second phase of this study, the response is computed

R for a viscous flow near a wall due to the motion of a hairpin

R vortex above the wall. The results reveal that a complex, unsteady

;' boundary-layer flow develops near the wall which ultimately develops

o a very strong local outward growth. The final stages of this

. development are expected to lead to a boundary-layer eruption and

¥ the creation of a secondary hairpin vortex by a strong viscous-

‘; inviscid interaction with the outer flow. This mode of regeneration

! is believed to be a fundamental process wherein new vorticity from
the wall region is continually introduced into the turbulent bound-

> ary layer.
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CHAPTER I
INTRODUCTION

1.1 Background

IAANNTUNIWY AP TS L’.x}

Most flows occurring in nature and in engineering application

are turbulent. The atmospheric boundary layer as well as ocean

P FR 28 g% 1 4

currents are generally in turbulent motion. The major portion of

boundary layers which form and grow on such devices as turbine blades
and aircraft wings are turbulent. Turbulence is usually present in
most channel and pipe flows as well as in most combustion processes.
The study and prediction of turbulent flow phenomena is thus an
extremely important area of basic research.

Generally turbulence cannot sustain itself without some source
of energy. For incompressible flows, the production of new turbu-
lence is generally observed to be associated with the presence of
shear in the mean flow; the most common location where mean shear
occurs is near solid walls where the flow must be reduced to rela-
tive rest to satisfy the no slip condition. The role of shear in
the production process appears to be important for if turbulence
arrives in an environment where there is no shear (or some other
maintenance mechanism), it decays. Unfortunately, the production
process is not well understood. A common view is that vortex
motions play an important role in the transport of turbulence; the

large scale eddies are thought to extract energy from the mean flow
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Wy (see for example Tennekes and Lumley, 1972, p. 41 or Hinze, 1975,

p. 74) and then to transfer energy to smaller scale eddies through

k: vortex stretching. Ultimately the smaller eddies dissipate energy
)
fr into heat through viscous dissipation. Although this statement of

the processes in turbulence is commonly accepted, it does not shed

much 1ight on the complex dynamics that occur in the production

&* mechanisms near walls,
: In recent years, there has been considerable experimental
g interest in the structure of turbulent boundary-layer flow near
.§ walls and it has become apparent that such flows are not comprised
L of random fluctuations in velocity; rather an ordered (but complex)
S cyclic sequence of events appears to take place in the flow near
;% the wall. This apparently deterministic sequence is usually
f referred to as the coherent structure or the coherent behavior of
E the wall-layer flow; here the wall layer is understood to imply that
: portion of a turbulent flow between the wall and locations where the
) mean profile is logarithmic in y, the distance from the wall. There
‘g are two features which are observed to dominate the dynamics of the
.3 wall-layer flow, namely the low speed streaks and the bursting
A phenomenon. When a visualization medium, such as dye or hydrogen
E bubbles, is introduced into the wall-layer flow it is observed to
is collect into low-speed streaks near the wall which are aligned in
the streamwise direction and which persist over relatively long
;E distances; the streaks are referred to as "low-speed" because the
.% streamwise velocity near the streaks is generally observed to be
s -2-
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" less than the velocity distribution corresponding to the mean pro-

. file. A schematic sketch of the observed phenomenon is given in

: Figure 1.1.

) The second important feature of the wall-layer flow is the

' bursting process wherein the wall-layer fluid is observed to erupt,

3 at isolated spanwise and streamwise locations, into the outer region

l} of the flow. The event is observed to initiate near a wall layer
streak and in its primary stages is characterized by a 1ifting of

? the Tow=speed streak from the wall; an apparently oscillatory

. behavior then starts to develop in the streak and then a violent

i chaotic eruption of wall-layer fluid is observed. A schematic

2 diagram of the various stages of the process, as viewed from the

side and which is adapted from Kline (1978), is shown in Figure
1.2.

The physical cause of the wall-layer streaks and the bursting
phenomenon is not well understood. In this study, the possibility
that the observed effects are due to convected vortex motion will be

) considered. In particular the major thrust of this study is an
investigation of the cause and effect relationships generated by a

convecting hairpin vortex.

' 1.2 Experimental Studies
It is coomonly believed that the vortex motions that are
clearly observable in boundary-layer turbulence, play an important

role in the dynamics of the turbulence and a variety of model vortex

.
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Streaks

Flow direction

Figure 1.1 - A schematic sketch of dye collected
into low-speed streaks in a turbulent
flow near a wall.
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: Figure 1.2 - Schematic sketch of wall-layer burst-

ing process when visualized by dye

M injection through the wall.
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motions have been suggested. In an early study by Nychas, Hershey
and Brodkey (1973) it was suggested that (what appeared to be) large
“ transverse convecting vortices in the outer layer were somehow
associated with the bursting events near the wall. Bakewell and
Lumley (1967) and later Blackwelder (1978) and Blackwelder and
Eckelmann (1979) suggested that long counter-rotating streamwise
vortex pairs are an important feature in the time-dependent flow

near the wall. Falco (1981,1982) has proposed that convected ring-

_-,,-
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éﬁ like vortices are an important dynamical feature of turbulent

:5 boundary layers. Perhaps the most popular vortex model is the hair-
's: pin vortex which has been proposed as a basic feature of wall-layer
,;E turbulence by Theodorsen (1952), Willmarth and Tu (1967), Kline

3; et al (1967), Offen and Kline (1973,1975), Smith (1978), Wallace

- (1982), Head and Bandyopadhyay (1981), Perry, Lim and Teh (1981),
:2; Perry and Chong (1982), Smith and Metzler (1983) and Acarlar and
k. Smith (1984, 1987a, 1987b) among others.

In the study by Nychas, Hershey and Brodkey (1973), small
solid particles were suspended in a water flow and the particle

motions were photographed using a high-speed motion-picture camera

which moved in the flow direction. It is difficult to get a clear

three-dimensional picture of the sequence of events with this

approach. Nevertheless, Nychas et al (1973) observed what appeared
to be transverse vortices convecting in the outer layer. Such

vortices induced a decelerated flow near the wall followed by a
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region of acceleration. It was concluded, on the basis of the
visual observations, that ejection events at the wall were closely

associated with the presence of transverse vortices in the outer

SARANY JUAASNYY" Y SN

flow; the clear suggestion of this work is that the transverse
vortices induce conditions in the wall region that cause an
ejection. A similar mechanism is suggested by the studies of Falco

(1981,1982) and Falco and Wiggert (1980); in these experiments, the

flow structure of the turbulent boundary layer was visualized by

using smoke in air and compact vortex structures, which appeared to

be similar to vortex rings, were observed; the ring-like vortices

were believed to induce eruptions of the wall-layer flow. Detailed

experiments involving vortex rings moving toward a wall by Cerra and

Smith (1982), Walker, Smith, Cerra and Doligalski (1987) and Didden

and Ho (1986) confirm that vortex rings moving toward a wcll do

induce eruptive behavior and the production of secondary vortices

through an unsteady separation effect with the boundary layer near

the wall. This mechanism will be discussed in more detail in

Section 1.3.

Another picture of the flow near the wall in turbulent

boundary layer has been proposed by Bakewell and Lumley (1967);

these authors examined the near-wall region of a pipe flow and on

the basis of measurements with a hot-film anemometer concluded that

the most energetic velocity fluctuations were associated with pairs

of counter-rotating vortices. Bakewell and Lumley (1967) suggested




that the dominant structures in the wall-layer reqion consist of

randomly distributed counter-rotating vortices which are elongated
in the streamwise direction. A similar model was proposed by

Blackwelder and Eckelmann (1979) who suggested that long streamwise

vortices are present in the wall-layer flow; in this model, the role

of the counter-rotating vortex pairs is to pump low momerntum fluid
away from the wall and to lead to the formation of the low-speed
streaks. It was conjectured that the process terminates with the
arrival of a sweep of high speed flow from the outer region which
was supposed to lead to a highly inflectional streamwise profile
near the low-speed streaks. The inflectional velocity profile is
believed to be a highly unstable situation and the bursting event
was considered to be the outcome of the instability. This type of
model is purely kinematical and assumes a great deal about insta-
bility in a time-dependent evolving flow field; apart from these
difficulties, the physical origin of the counter-rotating vortex
pairs was not explained.

A third type of vortex structure that has often been proposed
as a basic feature in turbulent boundary-layer flows is the hairpin
vortex. A variety of terms have been used to describe hairpin
vortices; Head and Bandyopadhyay (1981) have pointed out that
these terminologies really imply the same vortex structure but at

different Reynolds numbers. The classification scheme taken from

their paper is reproduced in Figure 1.3, which simply implies that

“'{'i{‘\ "'."' ,‘
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Figure 1.3 - Effect of Reynolds number on eddies
a) very slow.Re (vortex loops);
b) low-moderate Re (horseshoes);
c) moderate-high Re (hairpins).
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Y
"W at higher Reynolds numbers the vorticity tends to become more tightly
ﬁ‘ concentrated in smaller and smaller core regions. Head and
v Bandyopadhyay (1981) carried out a series of wind tunnel flow N
1: visualization experiments using smoke; their results indicate EE
’z that the turbulent boundary layer consists of a "forest" of hairpin N
j vortices which continually stretch in shear and .ppear to be inclined g
at a characteristic angle of 45° to the wall. A similar picture has §
;: also been suggested by Perry and Chong (1982) who conjectured that ;;
=, the structure of the turbulent boundary layer is dominated by a
;N systematic heirarchy of hairpin vortices. There are some appealing
g features about this conjectured type of structure but the physical
picture appears incomplete. For example, there is no explanation
3 concerning the processes leading to the production of new vorticity
Lf from the wall region; in addition the notion of a series of hairpin
vortices which continually stretch and intertwine in shear does not
appear to lead to a complete and an entirely satisfactory pattern of
evolution.
b Recently, Smith (1984) has proposed a conceptual model of the
2; physical processes that occur near the wall in a turbulent boundary
K layer which was based upon extensive flow visualization experiments
as well as a previous model by Offen and Kline (1975). In the latter
’ study, it was suggested that 1ift-up of the low speed streaks (which
?_ appeared to be a precursor of the bursting process) was associated o
with the temporary imposition of an adverse pressure gradient on the ;3
Q 2?
: ::
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wall layer by a convected disturbance. Smith (1984) also adopts

g\ this view and suggests that the effect of the local adverse pressure
E: gradient is to induce an inflectional behavior in the streamwise

?E velocity profile near the interface of the streak and the high speed
j: outer region fluid. The instantaneous inflectional profile is

f% assumed to be unstable and to give rise to a series of roll-ups into
" a number of hairpin vortices. As the hairpin vortices are convected
N away from the surface, a strong vortex stretching process in the

ii streamwise direction cause intensification in the legs of the hair-
hj pin vortices; thus, the counter-rotating legs of the hairpin vortices
i act to reinforce the streak, thus creating an appearance of streak

- persistence. The bursting process is suggested to be due to the

ij breakup of the low-speed streak which is 1ifted by the counter-

N rotating legs of the hairpin; rapid ejection may be due to the

3 viscous effects induced by the local streamwise adverse pressure

~

associated with the moving head of the hairpin vortex.

\ In order to observe the motion of hairpin vortices in a control-
led environment, Acariar and Smith (1984, 1937a, 1987b) carried out a
series of experiments where hairpin vortices were artifically gener-

ated in a laminar boundary-layer flow on a plane surface. The hair-

pin vortices were synthetically generated by shedding from a hemi-

spherical protuberance on the plane wall. Flow visualization was -
\.

carried out using hydrogen bubble wires and it was determined that -
o~

convecting hairpin vortices produce flow patterns which are very -
[ )

3
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similar to those observed in the near-wall region of a turbulent
W boundary layer. In Figure 1.4, which is reproduced from Acarlar and
g Smith (1984, 1987a), the bubble line patterns generated from a bub-
: ble wire placed normal to the wall may be observed for (a) a convec-
ﬁ ting hairpin vortex in a laminar boundary-layer flow and (b) in a
;; fully turbulent boundary layer. In Figure 1.4, the quantity X/R =
’S 20 indicates that the flow pattern is at a streamwise distance equal
to 20 radii downstream of the hemisphere; Ree is the Reynolds number
P of the turbulent boundary-layer flow based on momentum thickness. In
'5 Figure 1.5, the bubble wire was placed in an orientation across the
;; span of the flow and close to the wall. It may be observed that the
3 convecting hairpin vortices produce a "streaky" structure in the
? flow near the wall which is similar to the typical patterns observed
Lf in turbulent boundary layers. In addition to the flow visualization
';: studies, Acarlar and Smith (1984, 1987a) also carried out quantita-
é tive measurements in the region downstream of the hemisphere; it was
3y

found that the measurements were very similar to those typically

obtained in a fully turbulent boundary layer.

It is reasonable to conclude from the experimental evidence

available that the hairpin vortex is a potentially important flow

structure in turbulent flows near walls and worthy of further study.

1.3 Theoretical Background

1.3.1 Inviscid Vortex Dynamics

In recent times, there has been an increasing interest in the

-12-
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(b) Turbulent boundary layer, Re 2200

Figure 1.4 - Side view conparicon between hairpin vortex
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development of numerical algorithms to calculate three-dimensional
vortex motion. The general approach may be described as follows.
For a given vortex filament and a given initial configuration, a
discretization is accomplished by placing a number of nodes on the
filament; some approximation to the Biot-Savart integral (Batchelor,
1967) is then used to compute the local instantaneous velocity
induced on a node by the other portions of the vortex. The motion
of each node is then computed numerically thus giving the position
of the vortex filament at the next time step. Such calculations
are time consuming, notoriously unstable and difficult to carry out
with good accuracy. One major difficulty is that a vortex filament
having a core of zero cross-sectional area induces an infinite
velocity on itself for any curved portion of the vortex; the
infinitesimally thin vortex is therefore not a self-consistent

dynamical model and in any computational algorithm it is necessary

(I
,
-,
(
'

to take into account the fact that the vortex has a core of finite
thickness. In addition it is, in principle, necessary to account
for motions within the core and how such motions can influence the
overall motion of the vortex.

The theoretical problem is immediately evident when the Biot-
Savart integral over all space is replaced by a line integral
along the instantaneous location of the vortex filament; a singular-
ity occurs in the integrand at any point on the vortex filament where

an evaluation of the velocity induced by the vortex is desired

'I
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(this location will be subsequently referred to as the field point).

This singularity arises as a direct consequence of neglecting the
thickness of the vortex core. Over the years, a variety of
approaches have been proposed to deal with this difficulty and
these will be discussed in more detail in Section 2.3; only a brief
summary will be given here.

The first attempts at the calculation of vortex motion in
three-dimensions were by Hama (1962) and Arms and Hama (1965). In
their "localized induction concept", a Taylor series was used to
represerit the integrand near the field point; the integration was
carried out only over a short portion of the filament and the con-
tribution of the rest of the vortex was ignored. Crow (1970)
introduced the "cut-off method" wherein a small piece of the Biot-
Savart integral is omitted from the integration thereby bypassing
the singularity. In subsequent studies, Bliss (1970) and Moore
and Saffman (1972) put the "cut-off" procedure on a firmer basis
by selecting the cut-off length so that the computational algorithm
agreed with known exact results for a translating circular vortex
ring. The "cut-off method" is somewhat inconvenient from a computa-
tional point of view and an alternative (and similar) approach was
adopted by Moore (1972). In this technique, a small parameter is
artifically introduced in the denominator of the integrand to remove
the singularity; the small parameter is selected so that the pro-

cedure gives correct results for the circular vortex ring.
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Another computational approach is due to Leonard (1975,1979)
and Widnall, Bliss and Zalay (1971). In this technique, the self-
induced velocity of a vortex filament is computed throuah numerical
integration of the Biot-Savart integral except at the field point
and the two adjacent nodal points on the vortex. The contribution
due to these three points is estimated by fitting a vortex ring
locally and by estimating the contribution to velocity due to the
arc from known exact results for the vortex ring. Note however that
Liu, Krause and Ting (1985) point out that this process does not
necessarily give the correct direction of self-induced motion of the
arc surrounding the field point.

In recent times, Callegari and Ting (1978) have used the
method of matched expansions to investigate the dynamics of vortex
motion in three dimensions in the 1imit of vanishing viscosity; (see
also Bliss, 1970). These authors were able to determine the possible
form of a viscous solution in the vortex core and to match this to
an outer inviscid solution described by the solution of Biot-Savart
integral. It was demonstrated that the apparent singularity in the
Biot-Savart integral is removed by this procedure and a computational
algorithm was developed to compute the evolution of vortex motion.
Note, however, that the method at present is restricted to closed

vortex loops.

1.3.2 Influence of Convecting Vortices on Viscous Flow

Near Walls

-17-
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As a vortex is convected over a wall, it induces an unsteady
pressure gradient on the viscous flow near the wall. The effect of
the vortex motion has been studied by Walker (1978), Doligalski
et al (1980), Doligalski and Walker (1984), Ersoy and Walker (1985,
1986) and Walker et al (1987) for a variety of two- and three-
dimensional boundary-layer flows. In general, these studies show
that a moving vortex induces a region of adverse pressure gradient
in the flow near th: wall which in turn drives an unsteady boundary-
layer separation effect. In the cited studies, it emerges that a
wide variety of complex separation effects occur; however all
situations have one feature in common. Eventually the boundary-
layer flow near the wall develops strong outward local growth which
ultimately leads to a strong inviscid-viscous interaction with the
outer flow. Specific physical situations studied are as follows.

The unsteady boundary layer due to rectilinear vortex in an
otherwise stagnant fluid above a plane wall was considered by

Walker (1978). Inviscid theory predicts that the vortex will

convect at constant height and speed in the velocity field of the f:
image vortex. However, a short time after the initiation of the ;1
. “
motion, a secondary eddy of opposite rotation to the parent vortex °
N
occurs in the unsteady boundary-layer flow near the wall. The t{
e
numerical integrations show that strong and accelerating boundary- ;j
layer growth occurs near the secondary eddy and strongly suggest f;
that the boundary-layer will erupt into the outer inviscid flow -
™
<
RS
)
®
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* region. The experiments of Harvey and Perry (1972) confirm that

K this is the case and show that the inviscid-viscous interaction

;: consists of the ejection of the secondary eddy from the boundary

5' layer.

f The boundary layer due to a two-dimensional vortex convected

é in a uniform flow and a shear flow above a plane wall was considered
v by Doligalski and Walker (1984) and Doligalski et al (1980)

N respectively. At low convection speeds, the formation of a second-
:5 ary eddy, of opposite rotation to the parent vortex, was observed

f. in the boundary-layer flow along with explosive outward boundary-
e layer growth near the eddy. At higher convection speeds, secondary
§ eddies did not occur but a narrow band of strong growth was

: observed in tne calculations which was conjectured to ultimately

& give rise to an interaction with the outer flow. On the basis of

; these results Doligalski et al (1980) proposed a regenerative

9 mechanism for turbulent flows near walls. According to this pro-

. cess, the viscous flow near the wall begins to respond to the motion
;; of a convecting parent vortex above the wall giving rise to

- accelerating growth in a narrow band behind the moving parent vortex.
;i As time increases, the upwelling fluid penetrates the inviscid flow
'3 region above the wall to an increasing extent; as the rising fluid

; penetrates the cross flow above the wall, it is ultimately over-

': turned in a strong inviscid-viscous interaction leading to a roll-up
j' into a secondary vortex.

-19-
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The wall-layer model of Blackwelder and Eckelmann (1979) is
based on the assumption that counter-rotating vortex pairs play an
important role in the dynamics of the near-wall flow. Ersoy and
Walker (1985,1986) have computed the viscous flow development near
a wall due to counter-rotating vortex pairs above the wall. A number
of cases were considered and although a variety of unusual complex
separation phenomena were observed, the boundary-layer flow evolved
toward an eruptive state in all cases. When the sense of rotation
of the vortices is such that the flow is away from the wall between
the vortices, a boundary-layer eruption and local inviscid-viscous
interaction is indicated in a streamwise region between the parent
vortex centers; when the sense of rotation of the vortices is

reversed, the interaction occurs outboard of the vortex centers.

One feature which is missing from the aforementioned studies

and which is important in the three-dimensional flows observed in

P e’

S
turbulent boundary layers is vortex stretching. The subsequent ::
studies, Walker et al (1987) and Ersoy and Walker (1985) have .
examined the boundary layer induced by a vortex ring moving toward a f%
wall and a vortex loop approaching a wall at angle of attack. Again :3
strong boundary-layer growth was observed in the numerical calcula- J%

"N

tions; vortex loops stretch as they approach the wall, and as the f}
®

local vorticity levels increase, the eruptive response of the ;;
boundary-layer flow appears to intensify. ;%
%
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1.4 Summary and Overview :
Current experimental research suggests that the motion of .
vortices, particularly hairpin vortices, plays an important part in E
L)
the time-dependent dynamics of the turbulent boundary layer. The E
studies by Acarlar and Smith (1984,1987a,1987b) suggest that hairpin =
vortices are regenerative in at least two ways: (1) a hairpin in
shear appears to be able to multiply itself to the side in the sense ;
that secondary hairpin vortices are observed to form in the spanwise .
direction out board of the original hairpin vortex and (2) the crea- E:
tion of secondary hairpins through an inviscid-viscous interaction ::
with the viscous flow near the wall was continually observed. In B
Figures 1.6(a) and 1.6(b) (Taken from Acarlar and Smith (1984)) both 2
of these processes are depicted schematically. In the present study, D
the dynamics of hairpin vortices, with particular reference to the >
phenomena observed by Acarlar and Smith (1984), will be investigated ji
on a theoretical basis. ]
The plan of this study is as follows. In Chapter 2, a :!
numerical method for computing the motion of a vortex filament which i}
is based on a numerical approximation to the Biot-Savart integral f
will be given. It was determined that current numerical schemes for :'
vortices having small core radii are highly unstable; previous "
numerical investigation of vortex motion (c.f. Dhanak and lj‘
De Bernardinis, 1981) have been carried out for an unboundeu fluid ®
and have used relatively thick core sizes. In this type of situa- Ff
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tion the numerical stability problem is not evident. In the present
study, it was important to develop a reliable calculation method for
vortices with small cores; this is because the main interest was in
flows with walls and once the vortex core touches the wall, the
Biot-Savart calculation must terminate.

In Chapter 3, the numerical algorithm is tested by computation
of the trajectory of closed vortex loops near a wall. In addition,
a series of calculations is performed to compute the trajectories of
simulated "hydrogen bubble lines" in the flow as the vortex passes
by. These computations show that a moving vortex loop causes the
simulated "bubble lines" to form into a streaky type of structure
near the wall. The indication of these results is that a convected
vortex loop is a potential creator of wall-layer streaks in a

turbulent boundary layer.

In Chapter 4, numerical solutions are carried out to show the
evolution of a hairpin vortex in both a stagnant flow and a shear
flow. The evolution of the vortex in a shear flow is consistent with
the experimental results of Acarlar and Smith (1984). Simulations of
hydrogen bubble 1lines also show that the hairpin vortex is a poten-
tial creator of wall-layer streaks. Finally, a numerical calculation
is carried out to show the interaction that occurs between two hair-
pin vortices convecting in a shear flow.

In Chapter 5, a method is described which allows the determina-

tion of the viscous response of the boundary-layer flow near the wall
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to the motion of the convected hairpin. The unsteady boundary-
layer flow is three-dimensional and unsteady and the computation of
this flow would require computer resources well beyond what was
available in the course of this study. Consequently a method was
devised which allows the calculation of the boundary-layer evolution
along the symmetry plane of the hairpin vortex. The computed
results are strongly suggestive that the moving hairpin vortex
rapidly evokes an eruptiVe response in the viscous flow near the

wall. Detailed conclusions are discussed in Chapter 6.
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CHAPTER 2
THE VORTEX CALCULATION METHOD

2.1 Introduction

Three-dimensional vortex motions play an important role in a
variety of practical situations involving fluid flow and consequent-
ly several computational methods have been developed over the past
two decades to predict the evolution of three-dimensional vortex
motion. In situations where the vorticity in the flow field is con-
centrated in thin vortex filaments which convect in an otherwise
irrotational flow, calculation procedures are, in general, based on
the Biot-Savart law and are Langrangian in nature; the vortex fila-
ment is discretized at some initial time using a number of nodal
points on the space curve defining the filament and the subseyuent
motion of the nodal points is evaluated as the filament distorts.
In this chapter, a calculation method for the evolution of vortex
filaments is developed. The general features of the Biot-Savart law
are discussed in section 2.2 and some early calculation schemes are
reviewed in section 2.3. In this study an adaptation of a procedure
due to Moore (1972) was used to compute the evolution of vortices
and in section 2.4, a basic numerical instability in this scheme is
described. An improved calculation procedure is developed in
section 2.5.
2.2 The Biot-Savart Law

Consider a Cartesian coordinate system (x,y,z) with origin at
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0 and let the velocity vector at a point Po(xo,yo,zo) be denoted by
ﬁ(fo) where io is the vector from the origin to the point P . In
general (Batchelor, 1967), the velocity at Po is related to the
vorticity distribution o throughout space by the Biot-Savart law
which 1s given by,

->
w

-+ X - - >
(X)) = - £; 6-_ﬁ%—if}73-dv(x) + o, (X)) (2.1)

In equation (2.1) the volume integral is carried out over all space
where the vorticity is non-zero and aext is an background external
irrotational velocity field. The variable X is an integration vari-
able and the vector ; - io is directed from the field point Po to
locations in the volume V as the integration in equation (2.1) is
carried out.

Now consider the physical situation where the majority of the
flow field is irrotational and the vorticity is concentrated in
vortex tubes of small cross-section. For a single vortex tube, as
the cross-sectional area of the tube approaches zero, the vortex
approaches being a 1ine filament defined by a space curve. The

vorticity vector at any point on the curve may be written as,

-

w=at (2.2)
where t is the unit tangent to the curve (as indicated in Figure 2.1) e
and @ 1s the local magnitude of the vorticity. Note that the direc- i?
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Figure 2.1 - A portion of a vortex filament
(Shown for r<0).
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tion of positive vorticity is determined by the right hand rule and
for the situation in Figure 2.1, a vortex having the indicated sense
of rotation has negative . Since the vorticity is assumed to be
non-zero only within the small vortex core, the integrand in equa-
tion (2.2) vanishes except within the core where the volume element

may be written,
= dAcdz . (2.3)

Here d2 and dAc are differential length and cross-sectional area

elements along the core, respectively. The integral of the vorticity
distribution over the cross-sectional area of the core may be related
to the circulation about the core by Stokes' theorem and it is easily

shown that

{ndAc=gﬁ-d’s’=r. (2.4)
c

Here C' 1s any closed contour surrounding the vortex core and ds is a
length element on this path. According to Kelvin's theorem
(Batchelor, 1967), the circulation r is constant in time and also
constant along the length of the vortex filament. Consequently, the
Biot-Savart law (2.1) becomes,
XX
—>5— x dX + 4
X =X

P ext (o) (2.5)

c+
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where dX is a differential length element along the space curve C
defining the current position of the vortex. Since G(io) = afolat,
equation (2.5) apparently defines a differential equation from
which the evolution of each point along the vortex can be traced
forward in time. The difficulty is that for io on the curve C, the
integrand is singular and consequently the velocity field described
by equation (2.5) must be interpreted as an outer inviscid solution
which is not uniformly valid near the core of the vortex. To de-
fine a rational calculation procedure, it is in theory necessary to
match any solution obtained from equation (2.5) with an inner solu-
tion in the vortex core and thereby take into account how the evolv-
ing flow in the vortex core influences the overall motion of the
vortex. It emerges that this is a rather complex problem and
although recent progress has been made (Callegari and Ting (1978)) in
this area, a variety of approximate methods have been used over the
years. Some of these techniques are discussed in detail by Ersoy

and Walker (1985b) and only a brief summary is given here.

2.3 Previous Calculation Methods

For vortex motions in three-dimensions, there is one flow
situation where the core solution can be determined and subsequently
matched to the outer inviscid flow field described by the Biot-
Savart integral; this is the problem of a circular vortex ring which
propogates into an otherwise irrotational flow and has been con-

sidered by Tung and Ting (1967) and Saffman (1970). Consequently
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there is one exact solution for three-dimensional flows and this
solution has been used to structure a number of vortex calculation
methods. In the early calculation methods of Widnall, Bliss and
Zalay (1971) and Leonard (1975,1979) the curve defining the vortex
filament was first discretized into a number of nodal points; as

the vortex filament moves, the velocity induced by the filament at a

particular nodal point was calculated by a numerical integration of

E
%

the Biot-Savart law except over the segments of the vortex on either
side of the nodal point in question. The contribution of the in-

duced velocity due to the segments of the vortex adjacent to the

Tt
A

LI AL P
L I

nodal point was then estimated by fitting a vortex ring through the "
three adjacent points; the velocity induced by this arc at the nodal ﬁg’

&
point is then estimated using the known results for a circular _y!

.._.
e

vortex ring. The approach has been termed a "patched" solution
technique by Liu, Tavantzis and Ting (1984) and does not neces-
sarily give the correct direction of the self-induced motion locally.
Another approach to the cut-off method originally described by
Crow (1970) in his investigation of the stability of aircraft trail-

ing vortices. In this method, a portion of the filament near the

singularity at io is simply omitted in the Biot-Savart integral.

Let s measure distance along the space curve defining the instantan- o
eous vortex position and let So denote the value of s corresponding
to io; in the cut off method, the approximation to the Biot-Savart o
K
: integral is, o
S,
Y
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The notation in equation (2.6) implies that an interval of length éc
has been omitted in the integration on both sides of s = Sob Crow
(1970) determined a value for the cut-off length 8. by comparing

the result predicted by equation (2.6) when the vortex is a circular
ring with the known exact solution. As a result of this comparison,
a value of 6. = 0.642 a was suggested by Crow (1970); here a denotes
the small (not nonzero) radius of the vortex core. Moore and
Saffman (1972) were subsequently able to give a formula for 5.

according to,

§ 24a 2 d
Tog-S) = § - 452 [vezrdr + 801 wiorar (2.7)
0 0

where r measures distance from the center of the vortex core and v'
and w' denote the swirl and axial velocities in the core. The right
side of equation (2.7) was obtained from detailed results for the
flow in the core of a circular vortex ring; note that the result in
equation (2.7) relates the cut-off length to quite general velocity
distributions within the core but also that the validity of the cut
off method is assumed.

From a computational standpoint, the cut-off method of Crow
(1970) is normally not a convenient algorithm for the following

reason. Calculations involving the Biot-Savart law are Lagrangian
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-: in character; the space curve defining the vortex at some initial

é; instant is discretized into a number of nodal points which then may

be considered to be Lagrangian markers. The object of the numerical
integration is to trace the path of these markers and thus determine
the shape of the vortex filament at subsequent times. To use Crow's
(1970) method, it is necessary to subtract a portion of the integra-
tion range near each point So in equation (2.6); generally the cut-

off length will not correspond to the mesh length and indeed will

change with time in general. An alternative approach is due to
Moore (1972) and has its origins in a study by Rosenhead (1930); in

this technique,the singularity in the integrand is removed by

' [ ‘; ('l" \A 5 .\;.i_ o

artificially inserting a small parameter u into the denominator and

equation (2.5) is written according to,

Bs,.t) = L g 2 o) ds + g, (s)) . (2.8) =
u(s_, = == x — S u S . . BN
(o] HC S {|X0-Xi2+u2}372 ext'~o _
Here s is a coordinate along the vortex and So denotes a specific l{:
@

location on the vortex. The integral is now taken over the entire gii
1.,'_]

vortex and an expression for the small parameter u is obtained by 531
insisting that equation (2.8) give correct results for the circular -
@

vortex ring. The following expression is obtained for u (Moore, ,}}
e

1972; Ersoy and Walker, 1985b). N
N

Nz’

. e

By | 4n? ¢ " 8-7 3 »

109(30- -5 T é v'ordr + 7ﬂr~£ w'irdr . (2.9) i

.
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It may be observed from equations (2.8) and (2.9) that the internal
structure of the vortex core flow influences the overall motion of
the vortex only through the parameter . in equation (2.8) which is
calculated as an integrated effect over the core via equation (2.9).
It might be expected a priori that the core radius a could be a
function of position s along the vortex as well as of t. However,
Moore and Saffman (1972) have argued that the vortex core does not
vary in the axial distance and is uniform at any instant in time;
the physical reasoning is that any local non-uniformities in the
vortex core will be rapidly smoothed out by travelling internal
waves on a time scale which is much smaller than the time scale
associated with the overall motion of the vortex itself. Thus the
vortex core radius may be regarded as a function of time alone and

Moore and Saffman (1972) also show that ,
L(t)a2(t) = constant , (2.10)

where L(t) is the total arc length of the closed vortex filament at
time t; this result simply states conservation of volume of the
vortex core. It follows from equation (2.10) that the core radius at
any instant in the motion is described by,

/2

a(t) = ao{%— é‘ 'ds} , (2.11)
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where 3, and L0 are the initial core radius and vortex length,
respectively. It is worthwhile to note that these are rather strong
results which have been confirmed by the asymptotic analysis of
Caliegari and Ting (1978). However the results apply only to a
vortex filament which is closed and therefore of finite length. 1In
addition, it appears that the theoretical description is incomplete
since it does not account for situations where Tocal variations in
core size are observed before a phenomenon known as vortex break-
down occurs.

Moore (1972) has used equation (2.8) to compute the motion of
aircraft trailing vortices; the method was also subsequently used by
Dhanak and De Bernardinis (1981) and by Dhanak (1981) to calculate
the evolution of elliptic vortex rings and a vortex filament
approaching a rigid sphere,respectively. In these calculations,
typical values of the vortex core radius used were on the order of
0.2. Although the integrand in equation (2.8) is finite everywhere,
it may become quite large near So° particularly in situations where
the vortex is undergoing stretching and a (and hence ) decreases. To
avoid potential inaccuracies in the numerical evaluation of the
integral near Sy Moore (1972) obtains the leading term in an

expansion around s = s_ according to,

0

(X X) 5 232

X 0 3X 3X<

22 x - (22)  x (259) P(s) (2.12)
as {'; _;1?+u?}37? 380 as? 0

where,
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3/2 °

X2, o
{(S-so) (as)o+“ }

and the subscript o indicates that the partial derivatives are
evaluated at s = So3 the leading order form of the integrand near

s =5, is added and subtracted to the integrand to obtain,

U(so,t) =

(2.14)

The apparent advantage of this procedure is that the integrand in
the first integral is 0(1) everywhere while the second integral may
be evaluated analytically. The method was used with good success by
Moore (1972), Dhanak and De Bernardinis (1981) and Dhanak (1981);
however, in all of these studies rather large values of the core
radii (a-0.1-0.3) were used. In the present study, one objective
was to compute the evolution of hairpin vortices close to solid
walls and to avoid situations where the vortex core impacted the
wall at relatively early stages, it was considered desirable to be
able to compute cases with very small vortex cores. It emerged
that the method of Moore (1972) exhibited strong numerical insta-

bility for small values of a; a modified formula based on eqguation
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(2.8) which is suitable for small a was developed in this study
and this will be discussed in section 2.5.

Another approach to the computation of vortex motion in three-
dimensions was originally described by Arms and Hama (1965) and this
is the "localized induction approximation". In this approach, it
is assumed that the dominant contribution to the self-induced
vortex velocity occurs locally; in this approach, the integrand in
the Biot-Savart law is approximated everywhere by its asymptotic

form near s = So and it may be shown that,

(ai) X (QE;)
Q) - g 22EBE0 10g(D) + 0(1) - (2.15)
&,

Note that this result may be obtained from equation (2.14) by
ignoring the first integral and integrating P(s) from s = -¢ to +¢
where ¢ is an 0(1) number; the integral over the image as well as
the external field are also ignored. In equation (2.15), a is
assumed to be small so that -log(a)>>1 and the first term of equa-
tion (2.15) is presumed to describe the leading order behavior of
the velocity field everywhere.

The "localized induction approximation" was used by Arms aiid
Hama (1965) and more recently by Aref and Flinchem (1984) to obtain
some interesting results. In the Tatter study, the term log(1/a)
was regarded as a large but unknown gquantity which could be absorbed

in a time scale; results which bear a similarity to those obtained
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in the present study were found for the propogation of a three-
dimensional distortion on a two-dimensional vortex. However, it was
evident at the outset that three-dimensional vortex motion involves
some rather complex ptenomena which often cannot be obtained

through phyeical intuition; in addition, the effect of the wall was
of prime c.rcern. For these reasons, it was considered important

to carry out numerical integrations of the full Biot-Savart Taw and
to account for the presence of the image vortex.

One other approach should be noted. Recently Liu, Tavantzis
and Ting (1984) have described a computational method for closed
vortex loops which is potentially more general than some of the
methods described here. The computational method is based on a
previous analytical study by Callegari and Ting (1978) 1in which
asymptotic methods were used to write the Biot-Savart integral in
equation (2.1) as a part which is bounded everywhere /the finite
part) plus a part which becomes singular as the curve defining the
vortex core is approached; the analysis is valid for small vortex
cores. MWithin the core, the flow is viscous and Callegari and Ting
(1978) investigate possible unsteady solutions of the core equa-
tions; these are matched to the outer inviscid solution corresponding
to the singular part of the Biot-Savart integral. Consequently, in
this approach the evolving flow in the vortex core influences the
overall motion of the vortex loop to an increasing extent as time
passes. The details of the asymptotic analysis are complex and

will not be summarized here. To date, the method has not been
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k: extended to three-dimensional vortex filaments of infinite length, 55
5 which are of principal interest in this study. -
; A
% 2.4 An Instability Associated With the Moore-Rosenhead Method Ry
A
i, In the present study, the calculations of three-dimensional o
5 >
vortex motion were based on the Moore-Rosenhead model equations (2.8) I
Ve and (2.9) for the Biot-Savart integral. The algorithm based on this ;
A
N model is convenient for computational purposes and is believed to
'.‘
: realistically model the evolution of vortex motion. In order to
:j avoid loss of accuracy in evaluation of the integrand, the procedure )
> .y
b suggested by Moore (1972) given in equation (2.14) was used. How- £
'; ever after running several test cases, it was determined that the r
1 ] t-
~ scheme suffered from serious instabilities which generally became B
' -]
3 worse with either decreasing core size or an increased number of f
X e
- points on the vortex. To illustrate the problem, consider the case
j: of a circular vortex ring which is moving on a normal trajectory ;f
J.' A
'j toward a plane wall; the exact solution for the problem is known '
& .:\
' (Walker, Smith, Cerra and Doligalski, 1987) and it provides a con- °
o, ‘J'
L venient test case for the present calculation methods. Since, 2
s :
o )
" -+ ai N
) u(sy.t) = 33 (snt) o (2.16) %
9 =
-, R
b equation (2.14) defines an initial value problem; for a specified ;3
‘s
! number of mesh points along the vortex, equation (2.14) may be @

r5 5]

. integrated forward in time to track the motion of each individual b
2 3
¢ : -a

®
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point (denoted by So) on the vortex. The results of such a calcula-
tion are shown in Figure 2.2; here a vortex ring (of radius 1) has
been started at a height 0.5 units away from the wall. The vortex
core was assumed to be in solid body rotation with core radius

a = 0.005 and with v' =TIr/27a?, w' = 0 it follows from equation

(

2.9) that,

o34 (2.17)

In the calculation depicted in Figure 2.2, there were 100 nodal
points on the vortex and the time increment was at = 0.005. It may
be observed that the ring proceeds smoothly toward the wall but that
wiggles have developed in the ring by t = 0.05. Once "wiggles"
develop in the ring shape the calcuation rapidly breaks down and
gives nonsensical results as indicated at t = 0.055. The onset of
the appearance of the wiggles can be delayed somewhat by reducing
the time step but the problem is made worse by using more mesh poirts
to discretize the vortex.

The difficulty depicted in Figure 2.2 is due to a deficiency in
Moore's (1972) method and has not been previously observed by Moore
(1972), Dhanak and De Bernardinis (1981) and Dhanak (1981) because
these authors have used relatively thick cores (a=0.1 to 0.35).
Here, because of the presence of the wall, it was considered
desirable to be able to use very small cores and consequently it was

necessary to find a resolution of the problem.
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Figure 2.2 - Trajectory of a vortex ring (viewed from the

side) approaching a wall; the results are
computed using Moore's method (1972) and show
the development of numerical instability.
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The difficulty which gives rise to the instability is
associated with the fact that for small values of a (and hence u) the
‘. demoninator in the first integrand in equation (2.14) is small near
J s =5, and hence inaccuracies in the derivative ai/as are magnified.
The integrand in the first integral in equation (2.14) is plotted in

Figure 2.3(a) for a typical point s, at t = 0.01 for the calculation

PSR RV R |

depicted in Figure 2.2. It may be observed that the integrand

exhibits anamolous behavior near s = So3 it does not tend smoothly

to zero and shows two small negative spikes on either side of s = s

PP

o
; If the number of mesh points is increased to 200, the size of the
spikes diminishes but the phenomena persists. With increasing mesh
points on the vortex, the numerical evaluation of the gradients

ai/as is in general more accurate and this is reflected in the
diminished levels of the spikes in Figures 2.3. In Appendix A, it

N is verified that the problem is due to a inaccurate evaluation of
the first integrand in equation (2.14); a basic modification of the

scheme is considered next.

;I 2.5 The Present Method

The motivation behind the algorithm (2.14) described by Moore
(1972) was to obtain an accurate evaluation of the integrand near
S =5, However the results of the previous section and the
discussion in Appendix A shows that there are still difficulties

with the procedure for vortices with small cores. To eliminate

' these problems, the integrand in the first integral of equation
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o (2.14) was represented by higher order terms in an expansion about

)

s =s_; the details are described in Anpendix B and if R(s,s

0 0

4 denotes the integrand in equation (2.14) according to,
. R

-> (X --i) -> >

_ X 0 3X 32X

s R(s,s )= 22 x — - (22) . x (=) . P(s) » (2.18)
o o 3s {|X0-}|2+H2}3/2 as’o 3s%’o
[LY
<
!
o where P(s) is defined by equation (2.13), it can be shown that
)

R(s,s.) = ) (s-s )3 +D (s-s )4 + —--- (2.19)

*>0 3 ) 4 0 ? )
- where 53 and 54 are vectors defined by equations (B.9) and (B.10) in
.ﬁ Appendix B in terms of vector products of derivatives of Y evaluated
y at s = So°
. In Figure 2.4, the exact value of the integrand R(s,so) is plot-
ted; here the expressions for a ring given in equations (A.2) and
(A.3) in Appendix A have been used to evaluate the gradients in

‘ equation (2.18). The result for R(s,so) using numerical differentia-
,E tion to compute the gradients and the local approximation (2.19) is

J also plotted in Figure 2.4. It may be observed that the local
approximation (2.19) represents R very well for small (s-so) and that
the behavior depicted in Figure 2.3 no longer occurs.

A calculation method for the vortex ring may now be structured
as follows. Iit equation (2.14), the first integral is split into

three parts and,

-43-

W e LI g -
X AL

o DT R P Gy T TS LRy

"
QISR ". e

I T N N I T T R R S S R S R R e L T e L O L A DL L L I O e

o . ) P o PN o P, y Ca N A
R TR o T CR AR R T s, S N R L S ALY

» ‘: ’: Sl ~l‘ l"'( ..l‘-




| ]

L 1
-1.0 -0.5 e;ga , 0.5 1.0

Figure 2.4 - Comparison of local approximation to the
integrand R(s,s_ ) to the exact answer for

a ring vortex.

-44-




. T RN WY N WU WL W N A NENE FF AN N R R AN Ty S YW T Oy e o gy vy

. ZE
Aa :A’
h -g
..l

-’: ‘.‘:
' > > i;

M 1 -h > (X_-X)
. aX r X 0 e
o =2 (s ,t) = {[é’ff][ X —— -
N ot 0 H -1 3S {|X0-X‘2+ 7}3/2 ::é
A Ny
- N
. 2 2% Sé
3

! (550 x (5520, Pls)lds 1
x : >
- g -+ -
“ r ,aX BZX "i‘
2 + f R(s,s )ds} in (-a—s' 0 m o f P(s)ds} .-j
": > -

Y

' 1 .7 (X -X) |

™ r 3X 0
> rj-’ 35 X |-)Z _-)E|3 ds - (2.20)

l* 0 ! image

4 In the ranges, [1,h), [-1,-h), the first integrand is evaluated as

5
L before while in the interval [-h,h] surrounding the point s = So°

)
w4 the integrand is evaluated using the series representation (2.19).

4 Calculations were once again carried out for the vortex ring moving

, toward the wall (r<0) and the results are shown in Figure 2.5.

L)

i Here a total of 100 mesh points were used on the ring with an

initial vortex core radius of 0.005 and at time step of 0.002. It
may be observed that the calculation proceedes without difficulty

until the ring is quite close to the wall in contrast to the

results of the computation depicted in Figure 2.2. Note that in

equation (2.20), the value of h must be selected small enough so

-
o ‘- -

that the series in equation (2.19) is convergent; for the calcula-
tions depicted in Figure 2.5 h = 3as and the integrals were evalua-

ted by Simpson's rule.
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The numerical procedure described in this section was modified
and used in this study to compute the evolution of hairpin vortices

in shear; these results will be described in Chapter 4.
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CHAPTER 3
THE INFLUENCE OF MOVING VORTEX LOOPS

3.1 Introduction

It is commonly believed that vortex motions play an important
role in the dynamics of the turbulent boundary layer. Both closed
loop vortices (rings)[Falco (1982,1983), Falco and Wiggert (1980)]
and hairpin vortices [Acarlar and Smith (1984,1987a,1987b)] have been
proposed as principal vortex structures in the outer region of the
turbulent boundary layer. Wall-layer streaks are observed in the
near-wall region of turbuient flows during the relatively long
periods of time when the wall-layer flow is not strongly interacting
with the essentially inviscid flow away from the wall: (Walker,
Scharnhorst and Weigand, 1986). It is therefore of interest to
understand the types of vortex motion which will induce a streaky
structure in the flow near a wall. In this chapter, the effect of
convecting vortex loops will be considered; the question of con-
vecting hairpin vortices will be addressed in Chapter 4.

The numerical calculations that will be described here may be
thought of as an inviscid simulation of the motion of hydrogen
bubble 1ines. First the trajectory of a vortex ring was computed
using the method developed in Chapter 2; for situations where the
ring is initially inclined at an angle to the wall, the ring
rapidly distorts into a vortex loop due to the effect of the wall.

As the vortex loop convects above the wall, it is of interest to
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understand the nature of the induced flow near the wall; in

PN X |

typical flow visualization experiments, hydrogen bubble lines are

used to mark the flow and the nature of the flow is then inferred

A

s

from the subsequent motion of the bubble lines. In the present

(;’r

study, the bubble lines were simulated by numerically tracking the

motion of several initially straight lines near the wall as the

R -2

vortex loop convected past. The objective of this simulation is
to determine whether the convecting vortex will induce the marker

lines to form a streaky structure.

3.2 The Trajectory of Vortex Loops

Consider a vortex ring having an initial radius R which is
initially inclined at an angle o to the wall as indicated in
Figure 3.1; here the o measures the angle between the normal to
the plane of the ring and the wall. If « = n/2, the ring will
remain circular and either move toward or recede from the wall
depending on the sense of the circulation; as the ring moves to-
ward the wall, the ring radius will increase. If o # /2, the
ring will immediately start to change into a "rubber-band" loop
shape. In this section, the results for various vortex trajectories
will be described.

In all cases described here, the initial ring radius R was
used as a representative length and 47R2/|r| was used as a time
scale to define dimensionless variables. Let s be a Lagrangian ;_g

)

variable on the vortex loop which ranges from -1 to +1 with s = =}
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corresponding to the same point (initially opposite from s = 0 on

the ring). In dimensionless form, equation (2.20) becomes

—~
U4
-
-+
~—
]

1 -h > (X_-X)
X 0
sgn(r){ [ + [ 2% x —
0 § G (X X[ 20,2y ¢

b h
- (@) % B p(s)ds + san(r) | R(s,s,)ds

ds . (3.1)

'
»
«Q
3
—_—
—
g’

P ——
o
b

For a closed vortex loop, it may be shown (Ersoy and Walker, 1985b).

that

b e : : 2A,
P(s)ds = - + Tog¢— + 1
-1 A Az 2p 32 T\
0 0 o]
& g 32

where A0 = ié . ;6. The parameter u is related to the vortex core
size through equation (2.17) and at any instant the core radius
a(t) may be computed from equation (2.11).

Starting from an initial ring configuration, the solution of

equation (3.1) was advanced forward in time using a fourth-order
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Runge-Kutta procedure. The spatial derivatives were computed at any
instant using central differences and the numerical integrations
were carried out using Simpson's rule.

Some typical results are shown in Figure 3.2 corresponding to a
ring initially inclined at o = 135° to the plane. For this calcula-
tion, I < 0 and so the vortex loop recedes from the wall; the
initial core size was a, = .005 and the calculation was carried out
with a time step At = 0.005 with 100 points on the vortex. The ring
center was initially at x = 0, y = 1.2. As the vortex recedes from
the wall, there is some contraction in the size of the loop until
eventually the influence of the wall becomes negligible. Another
case using the same numerical parameters is shown in Figure 3.3 for
a ring which recedes from the wall on a normal trajectory; note that
the ring radius decreases as the influence of the wall progressively

diminishes.

3.3 Simulation of Hydrogen Bubble Lines

The vortex loop trajectories computed in the previous section
are essentially unaltered if a uniform flow is superimposed in the
positive x-direction, with the exception that the vortex loop is
progressively convected to the right. In this section, the main
interest is in determining the distortions that will occur in a
pattern of simulated hydrogen bubble lines near the wall as the
vortex convects over the bubble 1ines. Consider the schematic

diagram in Figure 3.4; here a uniform flow of speed V is super-
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Figure 3.2 - Side view of the trajectory of vortex
loop convected with speed V = 5 («=135%).
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:: imposed to the right so that the vortex loop is progressively con-
o2
vected to the right. To simulate a boundary-layer region with
. velocity gradients near the wall for y < &, the unsteady inviscid
W velocity distribution was multiplied by y/é; thus the velocity field
for y > 0 is described by
X~
R
o
~ >
) Vipy(xoyszot)  y > 6,
-
‘ V(x,y,z,t) = (3.3)
. > y
.; Vinv(x,.Y.sZst)(g) Yy £ S
&
-
'Y
a' A constant value of & = 0.05 was used in this simulation. It should
" be noted that this simulation is purely kinematical; a convected
)
” vortex will generally induce eruptive behavior in the viscous flow
near the wall (Walker, 1978; Doligalski and Walker, 1984; Walker
\
- et al, 1987). The present simulation does not take account of this
! effect which will be addressed in Chapter 5.
) Assume now that a hydrogen bubble wire is placed in the region
of uniform shear near the wall at y = ho = ¢/2. When an electric
;? current is passed through the wire, a line of hydrogen bubbles is
> produced in the water. In the absence of the vortex, these lines
2 would convect downstream and remain straight lines; viewed from the
[ side (Figure 3.4(a)). These lines would appear as a series of con-
é vecting points; the top view in the absence of the vortex is
E depicted in Figure 3.4(b). In the simulations that will be de-
- scribed, it was imagined that 17 equally spaced bubble l1ines were
K
< 3
hd ‘56‘ .'-
“
- )
::.:21
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placed in the flow near the wall; the vortex was then introduced

into the flow and the subsequent trajectories of the bubble lines

were computed numerically. Let H denote the position vector to a

point on a simulated bubble line; the trajectory of any point on the

Tine may be computed from,

> '| > & >
g%= sgn(r){ [ —g—éx —i—;—x)- ds
-1 |H-X|3|vortex
1 > > >
- % X T—-r)—(H ! ds}f(y/s) - (3.4)
-1 |[H-X| 3| image
where
) y>§6 »
f(y/s) = (3.5)
Wy

In the calculations that will be described 51 mesh points were used

to discretize each of the simulated bubble lines. In the figures
that will follow the projection of the convecting vortex loop in
the xz plane will be shown as a broken line as indicated in

Figure 3.4(b).

3.4 Calculated Results

Consider first the situation corresponding to a ring moving
away from the wall on a normal trajectory (a=n/2) with a uniform
flow of speed V = 6 superimposed to the right. The trajectory is

depicted in Figure 3.5 in side view. In Fiqure 3.6 the computed
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Figure 3.6 - Temporal development of the simulated \
hydrogen bubble 1ines due to a convected N
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evolution of the simulated hydrogen bubble lines is shown at various
stages of development. In Figures 3.7 and 3.8, the development is
shown at various stages as viewed from the side and end on
respectively; in these figures the dotted line represents the top of
the simulated boundary-layer region at y = &. It may be observed,
upon inspection of Figures 3.5, 3.6 and 3.7, that the motion induced
by the convected ring vortex acts to concentrate the simulated
hydrogen bubble lines into a "streaky" type of structure in the
streamwise direction.

The second case detailed here corresponds to the same vortex
configuration as in the first case but with the convection speed
reduced 50% to V = 3. The vortex trajectory in side view is shown
in Figure 3.9. The temporal development of the simulated hydrogen
bubble lines for this case is shown in Figures 3.10, 3.11 and 3.12
in top, side and end views respectively. Again it may be observed
that the effect of the convected ring is to draw the simulated flow
markers into a "streaky" type of structure.

The last case considered here corresponds to a vortex ring

which was initially started inclined at an angle of o = 135° to the

@
]
::'-_:.ii
.

wall. In this case, the ring immediately starts to deform into a

£ "1 el
7’

PSP

vortex loop shape; the trajectory is depicted in Figure 3.13 in a

situation where the vortex is convected to the right with a speed of

S

V = 10. Note that in this case the vortex stays closer to the wall

than in the previous situations; as - is increased toward 180°, the

rre M
,'st.x','.‘.
Ny vy,
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Figure 3.7 - Side view of the development of simulated hydrogen
bubble lines due to a convected ring (V=6).
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Figure 3.11 - Side view of the development of simulated
hydrogen bubble lines due to a convected
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Figure 3.12 - End view of the development of simulated
hydrogen bubble lines due to a convected
ring (V=3).
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trajectory of the vortex loop remains progressively closer to the
wall. The deformation of the simulated hydrogen bubble lines in top,
side and end views is shown in Figures 3.14, 3.15 and 3.16. Again

it may be observed that the moving vortex colle~ts the simulated

flow markers into a streaky structure. The results obtained in this
case are representative of all cases that were considered for

a # 90°% For trajectories with o closer to 180°, the vortex remains
closer to the wall; the simulated bubble 1ines are stretched to an

increasing extent but also remain closer to the wall.

3.5 Conclusions
It may be concluded from the calculated results of this section

that a convected vortex ring or vortex loop is one possible vortex

motion which can give rise to a streaky structure in the flow near
the wall. In Chapter 4, another type of vortex will be considered,
namely the hairpin vortex, and it will be demonstrated that this
type of vortex motion also gives rise to a "streaky" type of

behavior.
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Figure 3.14 - Temporal development of the simulated
hydrogen bubble lines due to a convected

vortex loop (V=10).
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CHAPTER 4 2

THE EVOLUTION OF A HAIRPIN VORTEX ,}E

o

4.1 Introduction E:EE
In recent times it has become evident that the hairpin vortex ??:

may be a principal flow structure of the turbulent boundary layer. SE

This viewpoint was expressed first in an early study by Theodorsen
(1952) and a number of contemporary experimental studies have
supported this idea (see for example Head and Bandyopadhyay, 1981;
Perry and Chong, 1982 and Acarlar and Smith, 1984, 1987a, 1987b).

In this chapter, the nature of the evolution of a hairpin vortex in
a background flow is considered. The calculations described here
are inviscid simulations which are based on an appropriate discret-
ization of the Biot-Savart law. The plan of the chapter is as
follows. In Section 4.2, the equations of motion governing the
evolution of a three-dimensional distortion in an otherwise two-
dimensional vortex are described; the numerical scheme used to com-
pute the trajectory of the vortex is described in Section 4.3. Cal-

culations for the evolution of a haripin vortex in either a stagnant

or uniform flow above a plane wall are described in Section 4.4.
Computations for the development of a hairpin vortex in a shear flow
above a wall are discussed in Section 4.5 and a discussion of re-

sults is given in Section 4.6. The effect of moving vortices is

often observed experimentally using hydrogen bubble wires in water

flows; in Section 4.7, the results of a numerical simulation are ;'%
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described wherein the evolution of simulated hydrogen bubble lines
was computed numerically as a hairpin vortex in a shear flow con-
vected past. In Section 4.8, the nature of the streamwise velocity
fluctuation induced by a moving hairpin vortex is described.
Finally, calculations for the evolution of a pair of interacting

hairpin vortices in a shear flcw are described in Section 4.9.

4.2 Equation of Motion

It is convenient to develop the equations of motion in a
dimensionless form and for the hairpin vortex motion of interest,
it is necessary to define a velocity and length scale. Consider
first the situation depicted in Figure 4.1(a) where a two-dimensional
vortex of constant strength « is located a distance d above a plane
wall. For the sense of circulation indicated in Figure 4.1(a),
inviscid theory predicts that the vortex will move to the Teft with
speed,

Uy = 2 > (4.1)
and remain at constant heijht d above the wall as it convects in the
velocity field of the image vortex below the plate. Now consider
the more complex situation depicted in Figures 4.1(b) and 4.1(c)
where a hairpin is in motion above a plane wall. In the present
study, the hairpin was taken to evolve from a small local distortion
in a two-dimensional vortex; at large distances from the hairpin the
vortex will continue to behave like a two-dimensional vortex. Ffor

the present purposes, it is convenient to define dimensionless
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S/ S

(a) Two-dimensional vortex (side view)

S S

(b) Hairpin vortex (oblique view)

') ‘

d
7/ /7SS S S

(c) Hairpin vortex (side view)

Figure 4.1 - Vortex motion above a wall.
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variables in terms of d and the velocity defined by equation (4.1)

according to

> v t*U
x=_¥_ , t:—a_g_zﬁ;, (4.2)

where the asterisks are used to denote a dimensional quantity. Note
that the magnitude of the circulation |r| is related to the vortex

strength « by,
Ir| =21« . (4.3)

For situations of interest in the present study, r < 0 (c.f.Figure

(4.1)) and the initial vortex configuration used is given by,
> - ~ -Bs2 . 2 -
X(s,t) = A{cosai + sinajle +j+sk . (4.4)

This configuration corresponds to a two-dimensional vortex located
at a distance 1 from the wall with a symmetrical three-dimensional
distortion centered at s = 0. Here A represents the amplitude of
the distortion and o is the angle the plane of the distortion makes
with the plane wall; in addition g is a (large) number whose value
determines the width or spread of the distortion. The parameter s
is a Lagrangian coordinate which ranges from -= to += along the

vortex.

The integrals involved in the Biot-Savart law are over infinite

ranges. However it is not possible to carry out a numerical inte-
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e -

-h .
> >
L= ! Q,(s,spethds , 1, = { q,(s,5,t)ds, (4.7)
where
> v (_i "qx)) P 2
X 0 ax 34X
R + (59) x (557) Pls,s,). (4.8)
\' 35 {|X0_x|2+u2}3/2 35 o as o [o]
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gration for infinite values of s and in practice, the computations
must be carried out up to some large but finite value of s, say
s = +2. For |s| > &, the vortex filament was assumed to remain as

a straight line and

X(s,t) =i +3+sk , Is| >2. (4.5)

Note that 2 must be selected large enough to ensure that there is
no significant effect on the development of the hairpin vortex; as
the hairpin vortex begins to spread in the spanwise direction, it
was necessary to continually increase the value of t.

In the present case, the generalization of equation (2.20) (in

dimensionless variables) for a vortex filament of infinite length is

5%+

7, R
(so,t) = jz1 Ij(so,t) * gyt o (4.6)

Q
ct

where the integrals Tj are defined by the following expressions:

(1) The Integrals on the Main Part of the Vortex

&

D TR ]

22 d et e
5&. s’&‘.\\-.x

P




Here P is defined by equation (2.13), the variable s is a Lagrangian
coordinate along the vortex and the subscript o implies that a
quantity is evaluated at a specific point s = So where the local
velocity is being computed in equation (4.6). In addition, the
quantity h denotes the half-interval removed from the conventional
integration over the vortex; for |s| <h, the representation of the
integrand is replaced by the series expansion given in Appendix B
and there is

(2) The Integral Near the Field Point
> h
I = {h R(s,so,t)ds R (4.9)

where R is defined by equation (2.19) and corresponds to the detailed

series expansions near s = s, given in equation (B.8) (Appendix B);

(3) The Integrals on the Straight Part of the Vortex

Sy T 4.10
14-{va®ds+{vads . (4.10)
where,
M (X_-X)
L o
Q,. = - 55 % -~ (4.11)

{|§°_X|2+u2}3/2 ;

(4) The Integral of the P function

> X 22X,
Ig = (55) x (552) [ Pls.sy)ds (4.12)

0 0o -£
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where P is defined by equation (2.13);
(5) The Integral on the Main Part of the Image Vortex

> 2 o
g = | Qs (4.13)
-2
where,
-> v (_i '-X)
Q‘i = _g_x X 'T,o—:,— ’ (4.14)
%,-%12

and finally,
(6) The Integrals on the Straight Part of the Image Vortex

o

1, = Ig Gds + [ Qs , (4.15)

o

where 61. is defined by equation (4.14).

The integrals (4.7), (4.9) and (4.13) were evaluated numerically
using a procedure based on Simpson's rule; the remaining integrals
were evaluated analytically. The integral appearing in equation

(4.12) 1is,

s} " v ] (s5-2) (s *2)
$,S s = - —-‘17'2'
-2 0 §;- {Bo(so-z)2+u2}]/27 {Bo(so-z)2+u2}

1

o7 109
0

1/2 1/2
{Bo(so—z)2+u2} /2 _ Bo ' (so-z)] (4.16)
(B, (s +2)24u2) 1/ Bo]/z(soﬂz)J
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where, ~d

X X :
B. = (&) . (& . (4.17)

(o as’ 3s’ ‘

a:

To evaluate the integrals in equation (4.10), it is first noted that J

along the straight portions of the vortex,

(¥o=¥)i-(x-x)]

OV

{(x=x ) 24y -y) 24(z -5 ) 2+u?)

Ve 37 Is] > 2 » (4.18)

S
7
where (xo,yo.zo) are the coordinates of the field point on the main j‘
part (the curved portion) of the vortex at s = So x(t) and y(t) ;
are the streamwise and normal coordinates of points on the straight i
part of the vortex. For fixed t, x(t), y(t) and (xo,yo,zo) are :El
fixed and upon taking the integrals indicated in equation (4.10) it 3
js easily shown that, ¥
"
n N &
(y,-y)i-(x,-x)] (z,-¢) ;
Iy = Yo 05y, NZ 372 “
X=X Yo ¥t {(xo'x)2+(yo'y)2+(zo'£)2+“2} o
f-
(z +2) e
: ° vz} - (4.19) 3
{(xy=x) 24y -y) 2+(z *+2) 2+u2} -3
In a similar manner, the corresponding integrals in equation (4.15)
may be evaluated along the straight part of the image vortex with .
the result that, ad
T . (yo+y)i-(xo-x)gl - (zo-z) %t
—— =3
7 Xo X) +(.Y°+,Y) J {(xo_x)2+(y0+y)2+(zo_1)2}3[2 :--
+ 4
) (z,+2) N
{(xy-x)2+(y ty) 2+(z )22 (4.20) .
(o] o
-+
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4.3 Numerical Methods

Starting from the initial vortex configuration described by
equation (4.4), the subsequent shape of the vortex was tracked for-
ward in time using the standard fourth-order Runge-Kutta algorithm.
The initial vortex was split into a number of equal increments in
the variable s and the subsequent motion of each point corresponding
to a fixed value of s was tracked forward in time. The spatial
gradients in equations (4.8), (4.12) and (4.14) were evaluated using
three-point central difference formulae and the integrations in
equations (4.7), (4.9) and (4.10) were carried out (at fixed t)
using Simpson's rule. After some experimentation, the value of h
(in equations (4.7) and (4.9)) used corresponded to one mesh length

in s.

4.4 The Evolution of a Hairpin Vortex in Stagnant Flow
In the cases discussed in this section, the vortex was assumed
to have the initial configuration given by equation (4.4) and to be

in an otherwise stagnant flow above the wall (U = 0 in equation

ext
(4.6)). Note however that the subsequent development of the vortex
in this case is identical to that for a vortex in a uniform flow
(aext = U°€) with the exception that the vortex would be convected
to the right (for U0 > 0). In all cases considered the vortex was
assumed to have a small core radius a = 0.02 which was held constant
during the integration. Note that this may be approximation; the

theory of Moore and Saffman (1972) applies only to closed filaments
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and a relationship 1ike equation (2.10) cannot be used since a

discontinuity in core size would ultimately develop at s = +2. The
more recent theory of Callegari and Ting (1978) also applies only to
closed loop vortices.

In the first case considered, the hairpin vortex was assumed to
have an initial amplitude of A = 0.5 and angle of inclination of
o = 45° in equation (4.4); the value of the spread parameter g used
was 20. It emerges that the self-induced velocities predicted by
the Biot-Savart law are rather large, particularly near s = 0
where the curvature of the vortex is initially largest. Consequently

it was necessary to take rather small time steps in order to avoid

-
P

the occurrence of "wiggles" or sharp corners in the vortex shape;

N
once sucn anomalies appear, the numerical scheme rapidly breaks ?5
down. A time step of At = 0.0002 was used in the integrations. For :’

the first case, a uniform mesh size of as = 0.005 was used and EE
initially the value of ¢ employed was £ = 2. Therefore in the %E

initial phases of the integration, there were 800 points along the
vortex from (-2,2). As t increased and the hairpin began to spread
to the side, the value of 2 was increased to & =3 at t = 0.03 and
then to ¢ =4 at t = 0.06. The calculations are very time consuming
and were stopped at t = .072 when the general trends were evident.

In Figures 4.2(a), 4.2(b) and 4.2(c), the evolution of the
hairpin is plotted for case 1 in top, side and end views respectively;

the vortex is drawn at intervals corresponding to every 40 time steps.

T I,
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:h It may be observed that the head of the vortex (corresponding to the

tip of the distortion) moves rapidly backward and after a brief

§: interval starts to move downward toward the wall. The rate of
‘g movement of the head should be contrasted with the relatively slow
;?'. backward movement of the straight portions of the vortex; for
§ |z] > 3, the vortex moves basically in the velocity field of its
?‘ image and advances slowly upstream. It is evident that on the
ﬁ curved portion of the filament, the vortex evolves in such a manner
i so that high local curvature is rapidly diminished. As the head
& bends back, the legs of the vortex curl backward in a counter-clock-

wise direction; the disturbance moves down toward the wall and
% spreads to both sides. With the evolution of the legs, new second-
| ary hairpin heads evolve to the side of the main distrubance. The
; calculation was terminated at t = .072 since the general trend of

the disturbance is reasonably well established at this point; the
W disturbance is expected to continue to propogate to the side as the
B vortex evolves into a "cork-screw" shape.
" In the second case considered, the same geometrical parameters
; were used as in Case 1 with the exception that the amplitude of the
. disturbance was doubled to A = 1.0 and the mesh size used was
: as = 0.01. The basic development of the vortex is similar to Case 1
; and is shown in Figures 4.3 at every 20th time step. [t may be

observed in Figures 4.3(a) and 4.3(b) that the head of the vortex
X pulls rapidly backward and the vortex begins to evolve into the same
K type of "corkscrew" configuration observed in Case 1. The calcula-
)
:
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tion was terminated at t = 0.028 since the evolution of the filament
was judged to be similar to Case 1.

In the final case considered, the effect of the initial angle
of the disturbance was considered by calculating a case where the
initial angle a = 0°. The results are shown in Figures 4.4. Again
the vortex head bends abruptly back and the evolution of the vortex
becomes similar to the previous cases. Consequently in all cases,
the initial distortion in the two-dimensional vortex was observed
to evolve into a "corkscrew" type of motion and the disturbance
spreads outward along the vortex. While the calculations were
carried out for a vortex in a stagnant flow, the same vortex
evolution would be observed in a uniform flow; if a uniform flow
is superimposed from left to right, the only difference in the evo-
lution depicted in Figures 4.2-4.4 would be that the vortex would

convect progressively to the right.

4.5 The Evolution of A Hairpin Vortex in Shear

In the previous section, the development of a hairpin vortex
in either a stagnant or uniform flow was considered; in this
section, the evolution of a hairpin vortex in a shear flow will
be addressed. The following background flow for these calculations

was assumed:
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Figure 4.4 - Temporal development for a hairpin vortex in a
stagnant flow. Case 3 (a=0°, A=0.5, 8=20); the
vortex position is plotted every 30 time steps
(at=0.0002). -89-
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Here V is the (dimensionless) uniform flow speed at large distances
from the wall and Y is the height of shear flow.

A series of these calculations were carried out using the
initial vortex configuration given by equation (4.4) with A = 0.5,
a = 45° and B = 20; the vortex core radius was a = 0.02. The
evolution of the vortex was tracked by computing the solution of
equation (4.6) numerically using equation (4.21). In all cases, the
dimensionless height of the shear flow was taken to be Yg < 1.5; the
mesh size along the vortex was as = 0.01. Initially the spanwise
extent of s was taken to be at s = 2= 2 and consequently there were
400 points on the vortex; as the hairpin vortex began to evolve in
the spanwise direction the value of 2 was progressively increased to
£ = 3 and then ¢ = 4,

The first case for a vortex in shear will be denoted here as
Case 4 and for this situation, a uniform flow velocity (at large
distances from the wall) of V = 50 (to the right) was used; note that
the velocities near the head are about 25 units to the left (for the
initial configuration in equation (4.4)). The value of V selected
in this case is thus about twice the initial maximum self-induced
velocity. Results for Case 4 are plotted in Figures 4.5 every 20
time steps; the time step used was at = 0.0005.

It may be observed in Figures 4.5 that the distortion in the
initial hairpin vortex grows as the vortex convects downstream in the
shear flow. The vortex head 1ifts away from the wall and eventually

rises into the uniform flow region. It may also be observed that the
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iﬁ vortex legs move progressively toward the wall and that new hairpin y
3: disturbances form outboard of the primary disturbance. It is .
ES: apparent that the shear flow has the effect of amplifying the E:
52 initial distortion as well as giving rise to additional hairpin E*
?} vortices on the initially undisturbed portions of the vortex. Cal- f:
e culations of this nature are rather time consuming and were term- iﬁ
:: inated at t = 0.1 for Case 4 since the general trends of the vortex g
E? evolution were evident at this point. 2;
:h In Case 5, the effect of increasing the shear rate was studied i:
) by taking V = 150; the background flow (given by equation (4.21)) 2:
?{ is now at higher speed and it was necessary to decrease the time step oy
f to At = 0.0003 to obtain smooth development in the vortex trajectory. Eé:
. ; The results are plotted in Figures 4.6. It may be observed by 55‘
lﬁ comparison of Figures 4.5 and 4.6 that one effect of the increased i:
N level of shear is to increase the rate of amplification of the E&
.S original disturbance as well as the evolution of secondary hairpin gg
: vortices. The trend for the vortex head to 1ift out of the shear t
f' flow (and then bend back) is evident in Figure 4.6(b) both for the ;?
Ef primary vortex head and the secondary hairpin vortex heads. The :;’
5 tendancy for the hairpin legs to move toward the surface may also be *
; seen in Figures 4.6(b) and 4.6(c). It is also clear from Figure

y 4.6(a) that the increased level of shear gives rise to an increased

) level of stretching along the vortex legs.

: The last case considered corresponds to an even higher level of

; -92-
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shear with V = 250 and is denoted as Case 6; in this case, it was
necessary to reduce the time step to at = 0.0002 in order to obtain
smooth results. Calculated results for the initial development are
depicted in Figures 4.7. It may be observed that the development is
similar to Case 5 but that the deformation of the vortex takes place
at a much faster rate. At t = 0.06, two secondary hairpins have
developed outboard of the primary disturbance, the legs of the
vortex move progressively toward the wall (Figure 4.7(c)) and are
relatively close to the wall at t = 0.06. In order to extend the
calculation to larger times, it was necessary to extend the computa-
tional domain froms = 2 = 3 to 2 = 4; a continuation of the sequence
for Case 6 is shown in Figures 4.8. It may be observed that the
bending back of the primary vortex head is now quite pronounced. In
addition, the vortex legs have moved very close to the wall; when the
integration was carried forward beyond the last stage depicted in
Figures 4.8, the vortex legs touch the wall after a few time steps

and the numerical algorithm terminated.

4.6 Discussion

The present results provide a detailed time history of the
evolution of a hairpin vortex both in an irrotational flow as well
as a shear flow. Some of the features of the flow development are
similar to those obtained by previous investigators. Perry and
Chong (1982), in an attempt to discribe the mechanisms of wall layer
turbulence,have described the evolution of “p-vortices"; such

vortices are meant to be a crude representation of hairpin vortices
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and consisted of two finite-length straight vortex filaments ?ﬁf
forming an inverted V shape above the wall. A numerical integration :
based on the Biot-Savart law was carried out for such "vortices" in Sgﬂ
a stagnant flow. Although this is a rather crude and questionable ésg
representation of a hairpin vortex, the results of Perry and Chong 23
(1982) do show features similar to the detailed integrations Ejf
depicted in Fiqures 4.2 to 4.4; the tip of the A-vortex was E§=
observed to bend backward and the A was observed to flatten and -2
spread in the spanwise direction. The present integrations are based E;E
on the full Biot-Savart law with a self-consistent representation of EEE
the vortex core flow and provide a detailed record of the hairpin %i:
development. Egi
Aref and Flinchem (1984) have considered the evolution of a EE%
hairpin vortex in a shear flow near a wall using the localized e
induction method due to Hama (1962). In this approach, the effect of ;GE
the image vortex below the plate was ignored and the self-induced ;if
velocity at a point was computed from the contribution due to a T
small arc of the vortex near the point; the effect of portions of the ;E:
vortex remote from the field point is neglected in the "localized iii
induction approximation". Despite these deficiencies, the calcula- 7
ted results of Aref and Flinchem (1984) do show an evolution of a iS}
hairpin vortex in shear which shows some qualitative similarities to %zi‘
the development depicted in Figures 4.5 to 4.8. %?
Recently, Moin, Leonard and Kim (1986) have computed the evo- ;iﬁ
lution of a curved vortex using the Biot-Savart law; the vortex core a
-97- -N-
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was accounted for using an ad hoc model described by Leonard (1935).
Their calculations were carried out with relatively coarse mesh
sizes but do show some features that bear a similarity to some of
the detailed results obtained here.

The present results may be compared with experimental results
of Acarlar and Smith (1984, 1981a, 1987b); in these experiments,
hairpin vortices were created in a sub-critical Taminar boundary

layer and the effects and motion of the vortices were observed as

[
. F " P d

the hairpins convected downstream. The vortex trajectories that

PR

have been computed in this study are in broad agreement with the

L4

behavior observed in the experiments of Acarlar and Smith (1984). The
heads of the hairpins were invariably observed to 1ift upward and
ultimately bend backwards. The evolution of secondary hairpin
vortices outboard of the original hairpin was clearly observed in

the experiments in agreement with the evolution shown in Figures 4.5-
4.8. Figure 4.9 is reproduced from the study of Acarlar and Smith
(1984); in this sequence the hairpin vortex is moving toward the
observer and as it passes a hydrogen bubble wire was pulsed to
produce a 1ine of bubbles within the flow. In this sequence, the
movement of the hairpin legs toward the surface may be observed

which is in qualitative agreement with the evolution shown in

Figures 4.5-4.8,

4.7 Influence of a Hairpin Vortex on Dye Markers

A common method of flow visualization is to introduce a
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Figure 4.9 - flow visualization sequence reproduced from Acalar
and Smith {1984) showing a hairpin vortex moving
toward the observer; the visualization is
accomplished with a hydrogen bubble wire.
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g sequence of hydrogen bubble lines into the flow (in water) and to

J observe their subsequent deformation. The wall-layer streaks in

:r a turbulent boundary layer are often considered to be the signature

k of a moving hairpin vortex; this view is strongly supported by the

\ experimental studies of Acarlar and Smith (1984, 1987a, 1987b). In

N the present study, the evolution of a hairpin vortex in a shear flow

E has been calculated and in this section, the influence of the moving

3 hairpin vortex on simulated hydrogen bubble lines in the flow will be

“ evaluated. Ej_
3 To carry out the numerical calculations, a total of 17 equally EE
ﬁ spaced lines were inserted in the flow field at the initial instant ;Z.
? for the vortex development of Case 6 depicted in Figure 4.7. A Efj
a total of 51 mesh points were used on each half of each line. In the f%
? first case considered, the 1ines were all at an initial constant

? height of Yo = 0.8 and were separated by a streamwise distance of i:

N 0.25 units in the streamwise direction. As the hairpin vortex

g evolved in the shear flow according to the development depicted in ~

b Figure 4.7, the trajectories of the "bubble lines", were computed

: numerically. A series of trajectories is shown in Figures 4.10 to

i 4.12 in top, side and end views; the current vortex position is

v shown as a dotted Tine. It may be observed that the simulated =~

bubble lines are collected into two nearly parallel strips of
concentration; this behavior is closely consistent with the observed

2 results of Acarlar and Smith (1984) (c.f. Figures 3.21 and 3.25
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"footprint" of a moving hairpin vortex.
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A similar sequence is shown in Figures 4.13 to 4.15 for the

“bubble Tines" located initially Tower at Yo © 0.7. A similar

type of development may be observed.
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Figure 4.10 - The simulated hydrogen bubble lines due to a con-
vected hairpin vortex (Case 6) at t = .03; initial
bubble 1ines were located at y = .8.
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ure 4.11 - The simulated hydrogen bubble lines due to a con-
vected hairpin vortex (Case 6) at t = .06; initial
bubble Tines were located at y = .8.

-103-

3

Wt W e e

AR N Ay,

- e \"\‘_‘.’ ’* .'n('“ S~ \.f.'f\f\u':‘f-‘f\f\‘
N X A M N K N O Dl ) A o

L O T R LN NN WAL N SN
OGN AC .r .r‘.f\_.r_ PG N A |

“l

P A

» '
st

3 - “e 2
‘h‘l' VNS
»

el

v v s

»
8 a4 e

X

2y

}“{ t: r3,

,S':“.

"&' "' C‘l ll

." .l’.-l'

0
s
.

O

Sy
. " i)

3

‘y

[ AN

Co 4

»



)

‘LA

X
. ?t,"*.' P

(a) Top view

N
L)
PR AT

»

h 2u

F o

% e
LT

PP

IS

G

= ¢
~
w

—le —

[« [
4}
<
by

1] -

x -

L]

@

X

>

0

(¢

]

)

FERS AP e

Selar &Yy e
.‘-'-f.ﬂ‘ PAT SR SR

»ple

. s

LIy
o e

e
.

OO
*

)

]

N

]
Neo}|

N
wl

Ny

7

(c) End view

Figure 4,12 - The simulated hydrogen bubble Tines due to a con- A
vected hairpin vortex (Case 6) at t = .07; initial 31
bubble 1ines were located at y = .8.
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. Figure 4.13 - The simulated hydrogen bubble lines due to a con- Y
‘ vected hairpin vortex (Case 6) at t = .03; initial
bubble Tines were located at y = .7.
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(a) Top view

(b) Side view

(c) End view

Figure 4.14 - The simulated hydrogen bubble 1ines due to a con-
vected hairpin vortex (Case 6) at t = .06; initial
bubble lines were located at y = .7.
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Figure 4.15 - The simulated hydrogen bubble 1ines due to a con- ~
vected hairpin vortex (Case 6) at t = .07; initial =
| bubble 1ines were located at y = .7.
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ﬁ, 4.8 The Velocity Signature of a Hairpin Vortex :E
" -
ﬂ‘ As a moving hairpin vortex convects in a shear flow, it ]
Y induces distortions in the streamwise velocity profiles and in this S
‘J section, the nature of the induced flow will be considered briefly. EE
;f Consider first the situation corresponding to Case 4 of Section 4.5 E:z
Y and select a particular vortex configuration at t = 0.1; the side Zi
é view of the vortex at this stage of development is shown in Figure ;E
- 4.16(a). At the eleven streamwise locations indicated in Figure Ei:
> 4.16(a), the instantaneous velocity fluctuation profiles are ::'
39 depicted in Figure 4.16(b); these profiles represent the instantaneous E
:. velocity fluctuations due to the hairpin vortex and were computed ir
o using the Biot-Savart law. It may be observed in Figure 4.16(b) ﬁ
é that the velocity profile labeled 8 displays the largest negative ;Z
\ velocity fluctuation at about y = 1.5; as y decreases, the magnitude ii
: of the fluctuation decreases. On the other hand, the velocity 3
? fluctuation above y = 1.5 is positive and peaks near 1.75. The ;5
‘j abrupt and relatively large reversals in velocity fluctuations are E'
N indicative of the presence of the vortex head. The actual instan-
E taneous velocity profiles at each station are shown in Figure 4.16(c).
}5 Another perspective on the nature of the streamwise velocity
) induced by a moving hairpin vortex is shown in Figure 4.17 for Case
J} 4, In this illustration, the instantan~ous velocity fluctuations
§ were computed at a fixed streanwise location (at x = 4.29), in the
” time interval t = 0.07 to t = 0.12 as the vortex convected past the
l: measuring station. The vortex positions at various times are shown
S
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" in Figure 4.17(a) in side view and the instantaneous velocity E§
§. fluctuations are depicted in Figure 4.17(b) at time intervals of §
“ at = 0.005. The corresponding velocity profiles are indicated in 'i_
¥ Figure 4.17(c). It may be observed from Figure 4.17(b) that a ;;
é rather large velocity fluctuation occurs as the head convects past E&
. the measuring station. As the hairpin head moves downstream there v
f is a negative velocity fluctuation near the wall at subsequent times 55,
3 which gradually diminishes with increasing time. 3&
- A set of instantaneous velocity profiles for Case 6 of Section 4
;3 4.5 at fixed value of t are shown in Figures 4.18; this case cor- é{
Yi responds to the largest shear rate considered and the instantaneous i&
’* shape of the vortex in side view is plotted in Figure 4.18(a) at fi
LE t = 0.078. Again the abrupt reversal in sign and the relatively EE
.§ large values of fluctuating velocity are an indication of the pre- E;E
] sence of the head at station 11. Note that in this case the vortex “
‘E legs have moved relatively close to the wall at this stage and induce Eg{
" a relatively large negative velocity at the wall (profile 1 in ;:
; Figure 4.18(b)). In Figures 4.19, the velocity fluctuation due to gt.
N the moving hairpin vortex are shown as the vortex convects past a E&
fixed measuring station at x = 9.2; the fluctuations are plotted in :7
- the interval t = 0.03 to t = 0.075 in Figure 4.19(b). Again the 56
: strong sign reversal in the velocity fluctuation may be observed as ?éé'
the hairpin head passes the measuring station. As time increases, iﬁl
X a negative velocity fluctuation is observed with a peak that moves éﬂ?
gradually toward the wall. At t = 0.065, the trailing portion of the gz:
. Ry
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legs are near the measuring station and the negative fluctuation is ;’
at a maximum near the wall. With the passage of the hairpin vortex, =
the velocity fluctuation at the wall decreases. -
The velocity distribution due to a hairpin vortex moving in a S;
shear flow close to a wall has been determined recently through use =
of image processing techniques (Lu, 1987). In this approach, the
velocity profile and streamwise velocity fluctuations were obtained
at a single measuring station by digitizing the high-speed video
sequences of the hydrogen bubble-line patterns released by a bubble E;
wire oriented normal to the wall. By comparing the results from E§
successive video frames, it is possible to determine the instan- ij
taneous streamwise velocity distribution at the bubble wire (Lu and g
Smith, 1985). In the experiments of Lu (1987), this process was Eij

applied to hairpin vortices shed from a hemispherical protuberance in
a subcritical laminar boundary-layer flow on an otherwise smooth
wall. Some results from Lu (1987) are shown in Figure 4.20 for the
streamwise velocity and streamwise velocity fluctuations which were
recorded as a hairpin vortex passed by the hydrogen bubble wire.

The sequences shown in Figure 4.20 shown successive profiles with
time increasing from left to right. The trends in these results

are qualitatively similar to that shown in Figures 4.17(b), (4.17(c)
and 4.19(b).

4.9 Interaction of two Hairpin Vortices

In the previous section, the motion of a single hairpin vortex
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Figure 4.20 - Profiles of (a) velocity and (b) velocity
fluctuation of hairpin vortex over a cycle

as obtained from hydrogen bubble flow
visualization pictures on plane of
symmetry of the hairpin vortex.
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above a plane wall was considered. In this section the evolution of
two interacting hairpin vortices is addressed.
For two hairpin vortices above a plane wall, the generalization

of equation (4.6) is,

>

X
k _ -

3=
Here k = 1,2 since there are now two hairpin vortices; So denotes a
point on vortex k and the Ij for j = 1,7 are given by equations
(4.7) through (4.20) for integrations along vortex k. In addition,
the background flow Géxt is given by the shear flow in equation
(4.21). The two additional terms in equation (4.22) represent the

integrations along the second vortex and are given by,

® X X, -X
k' k k'
=-j x_' -y ds,
8 ‘e OS X

—

w© 3; ' ; -_i 1
9 J 32 X ~3k »k ds. (4.23)
- (X =X 137,
k "k image

+

—
1}
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Here k' denotes the second vortex and the second integrand in
equations (4.23) is evaluated along the image of vortex k'.

The numerical method used is similar to that described for the
single hairpin vortex. At each stage in the 4th order Runge-Kutta
method, the intermediate location of each hairpin was computed; the
calculation then passed on to the next sub-step and the process was
continued until a complete time step had been taken. Note that the
computing time for two hairpin vortices is approximately four times
as great as for a single hairpin vortex. Because of the relatively
long computing times, calculations were carried out for only one
case. The two hairpin vortices were selected from two locations
computed in Case 6 (c.f. Section 4.5) with the second vortex
positioned slightly ahead of the first. The initial configuration is
shown in Figure 4.21; the first vortex is labeled Hl and is initially
located slightly behind the vortex labeled H2. The evolution of
these two vortices was then computed numerically; there were 600
nodal points on each vortex and the time step used was at = 0.0001.

The development of the hairpins is shown in Figure 4.22 after
100 time steps at t = 0.01. It is evident that both vortices have
been stretched in the shear flow; however, the legs of the leading
hairpin H2 have moved closer together under the action of the hair-
pin H1 as well as beina lifted (Figure 4.22(b)). The next stage of
development is shown in Figure 4.23 where it may be observed that

the interaction of the two vortices has continued. The trailing
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legs of H2 have now passed underneath the trailing part of H1; the
middle portion of the legs of H2 have passed upward between the legs
of vortex H1 (Figure 4.23(b)). The continuation of the interaction
may be observed at the 300th time step at t = 0.03 in Figures 4.24
and then at t = 0.4 at the 400 time step in Figures 4.25; the cal-
culations were terminated at the 480 time step and the vortex con-
figurations are shown at this stage in Figures 4.26. It may be
observed from these figures that the vortices tend to intertwine and
then reinforce one another, particularly along the vortex legs. At
the stage shown in Figure 4.26, the two vortices are relatively close
to one another and the calculation failed shortly thereafter. The
reason for this is believed to be due to the fact that the vortices
were so close that the vortex cores were touching. Once two vortex
cores approach this closely, it is necessary to consider a local in-
teraction region where viscous effects are important and where the
flow development is described by the full Navier-Stokes equations.

Such a calculation has recently been carried out by Weston, Ting

and Liu (1986) and by Liu, Ting and Weston (1986) for merging vortex

rings. This type of calculation is extremely complicated and is

beyond the scope of the present study. However it is worthwhile to

note that when the interaction on merging of vortices occurs, the

vortices merge in interaction zone and then recombine and break apart.

The processes involved are clearly complex and not well understood.
The interaction of a pair of hairpin vortices has been

observed experimentally by Acarlar and Smith (1984, 1987a, 1987b).
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Hairpin vortices which were shed from a hemispherical protuberance
located on the wall in a subcritical laminar boundary layer were
marked with dye and the evolution of the vortices was observed as
the vortices convected downstream. A development similar to that
depicted in Figures 4.21-4.26 was clearly observed in the experi-
ments. The legs of the older leading vortex were observed to
stretch in the shear flow but then to move together under the
influence of the trailing younger vortex and subsequently 1ift
through the legs of the younger vortex. The process of vortex
intertwining was clearly discernible in the experiments (c.f.

Figures 3.19 and 3.20 of Acarlar and Smith, 1984).
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CHAPTER 5
THE BOUNDARY LAYER INDUCED BY A MOVING HAIRPIN VORTEX

5.1 Introduction

In Chapter 4, the trajectories of hairpin vortices were calcu-
lated for situations where the hairpin was convected in both a uni-
form flow and a shear flow above a wall. In this chapter the nature

of the unsteady viscous flow induced at the wall by the moving hair-

¥

pin vortex will be considered. The motion of the hairpin vortex

5%
ﬁ.:':' <

gives rise to an inviscid velocity distribution near the wall which

' A

varies in the streamwise and spanwise direction and which changes
with time; near the wall, a three-dimensional unsteady boundary-layer
flow develops with time. The full three-dimensional boundary-layer
problem is complex and a successful treatment of such problems would
require computational resources far beyond what was available in the
course of the present investigation. Consequently a method was
developed to study the boundary-layer development but only on the
plane of symmetry of the moving hairpin vortex.

The plan of this chapter is as follows. In Section 5.2 the
nature of the inviscid velocity distributions due to the moving hair-
pin vortex on the symmetry plane is examined. The boundary-layer
problem is formulated in Section 5.3 and a set of transformations for
the boundary-layer problem is described in Section 5.4. A discussion
of the numerical methods used is given in Section 5.5 and calculated

results for one case are described in Section 5.6.
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5.2 The Inviscid Velocity Distribution

In Chapter 4, the three-dimensional evolution of hairpin vortices
was computed through a numerical integration of the Biot-Savart law.
At any instant, the inviscid velocity induced by the hairpin vortex

is given by,

~ > ->
Y o Xy (X -X.)
u (X ,t) = sgn(r)[ | h X —2 »h ds
0 "h
X, (X.-X.)
o X, -X.
- = x 21— ds] . (5.1)
“w X X ]®
o i
>
Here X0 is a vector to any location within the flow which is not
located on the hairpin vortex. The vector,
T : p -
Xh =Xty d+ zhk R (5.2)

is to an arbitrary point on the hairpin vortex while the vector

>< ¥

i = xhi - yhj + th . (5.3)

is to the corresponding point on the image vortex. In equation (5.1),
the first and second integrals are the contributions of the hairpin
and its image respectively to the induced velocity field at ;o'

Now consider the inviscid flow distribution near the wall which
corresponds to taking the 1imit y ~ 0 in equation (5.1); near the

wall the position vector is,
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Xw = xi +zk , (5.4)

and if the inviscid velocity distribution at the wall is denoted by,

u, = Uw(x,z,t)i + ww(x,z,t)k R (5.5)

it may readily be shown that,

ay 3z
- {(Z -z, h h

w Y Yngs !
W X,2,t) = 2sgn(r)f 373 ds ,
-={(x- xh)2+ yh2+(z z,)%}

3y, aXp

o {(x=- Xh)as yh3§4
ww(x,z,t)=- 2sgn(r) [ ‘
= {{x-x )24y, 24+(2-2,) 2}

377 ds

The form of the velocity components near the symmetry plane is

obtained by taking the 1imit z - 0 in equations (5.6) and (5.7); the

quantities Xps Yp and azh/as are even functions of s while Z,

axh/as and ayh/as are odd functions of s. Denoting the limit of

U, as z >0 by U_(x,t), it is easily shown from equation (5.6) that
azh EZE}

p
U (x,t) = 4sgn(r)j Whas " *hs
0 {(x- xh)2+yh2+z 2}

373 ds . (5.8)

As z ~ 0, W ~ 0 but 5W /3z is nonzero; defining 6 (x,t) by,

0_(x,t) =

so that,




.........................

4

-
il - e

) N
A
— -
~ A
A
ww v z8_(x,t) + ----as z-0 |, (5.10) A
£
it may be shown using equation (5.7) that, .
’l
¥
W X 3y Kyt
AW 2
t:; b {.yh"gh‘ + (X'Xh)—a’g‘l} -
v 6 (x,t) = - 12sgn(r) | . 577 zhds . (5.11) 2
0 {x-xyPhyy 4z, %) N
>, :\
&, "_..
o+ It is evident that distributions of U_(x,t) and 6_(x,t) may be .
’ evaluated at any instant by carrying out the indicated integrations ‘\7
NS
“d in equations (5.8) and (5.11) for several values of x. This was tj
-\ S
v accomplished as follows. For a fixed value of x, the integrations in E,,
~I
equations (5.8) and (5.11) were carried out for |s| < 2 using a N
numerical integration based on Simpson's rule. For |s| > 2, the :3{
~
vortex was assumed to be a straight line filament and thus, 2;
.
ax 3y 3z o
h = _D. = ___h = 1. ':‘ \
R T (5.12) -
Ay
The portion of the integral in equation (5.8) for s > 2 may be evalu- _’
ated by exact integration using, i
N
> }" b ds = yh'z 7
L ((x-xp ) 24y, 242, 213/ 2 (x=xp ) %4y, -
h h “h :
z, -
{(x-xh) +y,2+2,2) S

while the integrand for s > 2 in equation (5.11) vanishes.
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As examples of the nature of the U_and 6_ distributions, two
extreme cases are considered here. The first was denoted as Case 6
in Chapter 4 and corresponds to a hairpin vortex embedded in a strong
shear flow; the temporal development of the vortex shape was given in
Figure 4.7. 1In Figure 5.1, the distribution of U_(x,t) is depicted
at various stages during the evolution of the vortex. At t = 0, the
streamwise velocity distribution shows a region of strong decelera-
tion and then acceleration near the wall; in this case, all values of
U_ are negative. Note that for the case considered in Figure 5.1,
the basic shear flow is zero at the wall; if the shear flow were such
that the inviscid flow is reduced (through a region of uniform shear)
to a finite but non-zero velocity at the wall (say Uo), then the
only difference in Figure 5.1 would be that all distributions are
relative to Uo rather than 0.

As time increases, the vortex head moves progressively away
from the wall and the maximum inviscid speed near the wall induced
by the hairpin diminishes slightly. At a later stage (t = 0.04),
the hairpin head has moved further from the wall but has also moved
further downstream as the vortex is stretched out in the shear flow;
the influence of the hairpin head at t = 0.04 may be seen in Figure
5.1 where a distention has developed in the velocity distribution
near x = 11, For increasing t, this distention amplifies as may be
observed at t = 0.05 near x = 14, at t = 0.06 near x = 15 and then

near x = 18 at t = 0.07; this effect is directly associated

-136-

L A

oo " ) T P PR L P R P S A A A P P P T ¢

R e N T N T e T T

LR
e

Nty

CARAE
P h)

IV ]
-l‘."'.i *y

s

k)
l"\<.

."Dﬂ:ﬁ,

,J‘sl by

ET:,



kY ~ . NN A e, elered R AR
t -v--a\.-lrﬂliw P e -—.......... () I TEERE PE SN il LWt
S A P PR B} Fatata o .

*ABIYS UL X3340A urdurey bupaow e Aq pasnpul
Llem 3y3 Jeau aue|d Aujsumwds 3yl U0 AJLO0|3A ISLMWEDBUJS PLOSLAU] - |°G 24nbl4

X

| el ] S- ol-

sl EERRLE LS oW SNSRI ARy

O e @
Ll

-137-

oy

”-ura.-......”n p
i
-Q
L4 ‘m

RV

T
S
o

= \_';x

Ld

W

N

)

s

" o
Sdbind Calh

4

; --.- -. -
L

o
A
YN,

.

* -
o
'

7% )

o

-

4N

Aarn

AR
~.A~..




with the moving vortex head and this may be confirmed by comparing
Figures 5.1 and 4.7. At the later stages depicted in Figure 5.1,
additional distentions develop in the inviscid velocity distributions
and the origin of these can be understood from Figure 5.2. As the
vortex begins to develop secondary (and then tertiary) heads which are
then convected downstream, local minima will develop in the streamwise
velocity distribution; for example the local minimum near x = 12 at
t = 0.06 (and near x = 13 at t = 0.07) is associated with the instan-
taneous location of the secondary head. One final feature of the
distribution in Figure 5.1 is worthy of note; at t = 0.06 and then at
t = 0.07, the maximum inviscid speed has increased. This is believed
to be due to the influence of the primary leg (see Figure 5.2) as it
moves closer to the wall (c.f. Figures 4.7).

The evolution of the spanwise velocity is depicted in Figure
5.3 where 6_(x,t) is plotted at various stages during the process.
It may be observed that, as the hairpin is stretched in the shear and
convects downstream, there is a spanwise inflow toward the symmetry
plane of increasing magnitude (ew<0). Essentially this behavior is
due to the movement of the legs toward the wall. It may be observed
that the s_ distribution is developing a complicated form by t = 0.06.
It is worthwhile to note that the o_ distribution is not entirely
negative and changes sign (even at early times) at an x-location to
the ieft of the minimum. One other feature of interest is that by
t = 0.06 the region over which a significant o occurs has expanded

in the streamwise direction considerably as the vortex stretches out

§ e e e A A A At At M At aN N o T T S U
e M S N T A T P s e e e e D e
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Figure 5.2 - Schematic sketch of a hairpin vortex
after deformation in a shear flow.
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in the shear flow; at this stage, there is a significant “_in the
range 9 < x < 18 and to some extent, the spanwise flow is similar
to that induced by a pair of counter-rotating streamwise vortices.
The second case considered here corresponds to the hairpin
vortex evolving in an otherwise stagnant flow above a plane wall;
the trajectories of the vortex for this case were plotted in Figure
4.2. The temporal evolution of Um(x,t) and ao(x,t) are plotted in
Figures 5.4 and 5.5. Note that the changes in these distributions
are rather less dramatic compared to the situation when the hairpin
vortex is in shear. For a purely two-dimensional vortex, the
absolute minimum in U_ would be at -4 and thus the effect of the
three-dimensionality of the vortex is to slightly weaken the U,
distribution. If the same hairpin vortex were placed in an otherwise
uniform flow above the wall, the only change from Figures 5.4 and

5.5 would be that the distributions would be convected to the right.

5.3 The Boundary-Layer Problem

The boundary layer that develops near the wall below the moving
hairpin vortex is unsteady and fully three-dimensional. Let a rep-
resentative length be d (the distance of the undisturbed straight
line vortex from the wall) and take the representative velocity to be
Vc = v/2d corresponding to self-induced convection speed of the
straight part of the vortex at large distances from the hairpin.

The Reynolds number for the vortex flow is defined by,

Re = +/2v . (5.]4)
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If (x,y,z) are dimensionless Cartesian coordinates with corresponding

[N ]
Va

velocity components (u,v,w), a scaled normal coordinate and velocity

<
AR

in the boundary layer are defined by,

ey
PRI U

y'o=yre? v = e/ (5.15)

and the three-dimensional unsteady boundary-layer equations become,

ELY, al sU 5

ou u , du U W W W 34U

Wy, u, W ¥ ] . (5.

st TUa Y syt T gt ok P sz Ty (5.16)
aW W oW 5

oW ow v OW oW W W W W

— + — + + —_— = — e —_— )

st PU S Y gyr Yz T ot YUeax T W sz oy (5.17)

]
v W, (5.18)

3x = 3y 3z

where Uw and W are the inviscid velocities defined in equations (5.6) Sﬁfﬁ
e
and (5.7). -:ﬁ:l
N

The numerical problem associated with the full three-dimensional gk

boundary-layer flow is very complex and would require computer re-

‘I
-'l'-

RN
»

Y

sources which were not available in the present study. However the
boundary-layer flow on the symmetry plane z = 0 develops indepen- "
dently of the rest of the boundary layer. The flow near the symmetry
plane gives some insight into the nature of flow near the wall and
consequently is of interest here. Both u and v are symmetric about

z = 0 while w is an odd function of z; specifically,

W 29(x,y,t) + ~--- as z -0 , (5.19) And
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where 6 is a function to be determined. Substituting equation (5.19)

AN

into equations (5.16) - (5.18) and taking the limit z - 0, leads to

K
s

»

.b the special form of the boundary-layer equations on the symmetry &2'
< <
iﬂ plane, viz. ;:

N
‘ 24

U sU aU

U, U, o Bu T =, 2
st TU TV syt T ot e g Yoy (5.20)

A

A

-
5
-
3

" 36 a0 o
L 36 30 38 ® ® 328 >
byt 2+ 9?7 2 — + — 4+ 6%+
g tus v Sy ) T u, ™ 6 3y , (5.21) K
! 43
W ..
::é du , av' :;
" 22 + = . -
T X S}—r 0 0 (5.22) :::

In normal circumstances it is convenient in a numerical solution
of unsteady boundary-layer equations to write the streamwise velocity

for example, in the form

AN

s '
L

u=U_(x,t) F(x,y,t) . (5.23)

g Canti
aa_t

P
N a
i
[

4
ra
e v

The function F is then a normalized velocity which varies from zero

L)

Si at the wall to one at the boundary-layer edge; the procedure is EE
é successful when U_ is such that there are no zeros in U_ for all x iil

N and t. It was mentioned in Section 5.2, that U_ is negative for all ?;

‘? x and t; this may be confirmed with reference to Figure 5.1. The §i’
:: distribution of ¢_ however is somewhat more complex; it may be Eif
t} observed in Figure 5.3 that o_ is predominantly neqative but even- :;
;? tually develops a region of positive values (and two zeros) as the %;
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legs of the hairpin approach the wall. It is convenient to obtain a

decomposition of 6_ of the form,

6 (x,t) = e](x,t) + ez(x,t) s (5.24)

©

which is such the 8 and 8, do not have zeros for all x and t.
Presumably there are a variety of such decompositions; however due to
the complex nature of the evolution of 6_ (c.f.Figure 5.3) it proved
difficult to find a suitable decomposition which was valid for all t
of interest. The following decomposition was obtained by trial and

error:

= ((x-x,)2+3)1/2

61(x,t) e 3ds (5.25)

' 5/2
) {(x—xh)i+yh2+zh2}

az(x,t) 6_(x,t) - e](x,t) . (5.26)

Here the subscript h denotes coordinates along the hairpin and xQ(t)
is the instantaneous location of the undisturbed two dimensional por-
tion of the vortex (at large distances from the hairpin disturbance).
The temporal evolution of 8 and 6, are depicted in Figure 5.6 when
it may be observed that e] is positive for all (x,t) while 62 is
always negative.

Returning now to the boundary-layer equations on the symmetry
plane, it is convenient to introduce a functions ¢(x,y,t) and

u(x,y,t) defined by,

-146-

'fsl} S

i
VY,
AR

'
(;::‘H J;:‘l

A

P EES
<5 A
Ay

e
i

»
B
“. e

BRI
Lot b RN
.
.
0

l. .
RN
LA

By S N e e
}:’_c
‘ 'n'g.[

A
Ay,

XA
N N
RSN
8y,

.

MY

1

?7
yan gl

vaa

[

PR

4
@ 55

oot
oA \“\_\
PR
.

b
&

a A

v
ok
o5




K O“.ru..u.."..“...ru.ru

A TR AP A M)

P

- AP A .-v.«-(.v-{..-'-.
JII.-..JII, v S -.I.-c.f..aol. ety \f.f.f\f--\fn-_ﬂ. -unl(--unhv.! i~

Dt
IKARANRKAIIRY S hr i

“: 40 uoL31sodwodap ayy <% pue lg yo uoranions edodway - 9°G BNl

X
e Sl -] S o o




a2 s’

B San g B SEtaah g

and

33 =
u= _8—3 sV = - g_;% L) lb(x,O,t) =0 . (528)

The continuity equation (5.22) is identically satisfied using
these variables; note however that ¢(x,y,t) is not a streamfunction
and that it is not possible to define a streamfunction in a three-

dimensional flow.

5.4 The Transformed Boundary-Layer Problem
The streamwise coordinate x ranges from -» to -~ and it is con-
venient to transform to a new variable ¢ defined by

-1 X-XQ(t)+n

¢ = 2 tan™y b, (5.29)

m

Here xQ(t) represents the instantaneous streamwise location of the
undisturbed two-dimensional portion of the vortex; this transforma-
tion is one-to-one and transforms the doubly infinite range in x to
the range (-1,1) in 5. The factors of = in equation (5.29) were
chosen for convenience with the objective of transforming the stream-
wise position of the trailing legs of the hairpin vortex to near

£ = 1/2. Generally one objective of a transformation 1ike equation
(5.29) is to expand or magnify regions where the streamwise velocity

distribution is undergoing severe variations. In the present problem,
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this is difficult to accomplish, as may be inferred from Figure 5.1,

%,

(‘f{v
[AA

vﬂ

since the locations of severe variation are constantly shifting in

r

time. The transformation in equation (5.29) is tied to the moving

«"':~l
L)

two-dimensional part of the vortex but as the hairpin legs begin to

s

‘5"'1‘: "l'.'l _\.

move near the surface, a region of intense streamwise velocity

develops at values of x increasingly less than x = x,. The trans-

formation (5.29) does a reasonable job of keeping this range near
£ = 1/2 in the latter stages of the integrations. It was found by
trial and error that the form of the transformation (5.29) was very
important; furthermore unless particular care was taken to properly
expand the regions of intense variation in U_ and &_, significant
inaccuracies occurred in the numerical boundary-Tlayer solutions.

In the calculations that will be reported here it was assumed
that the effects of viscosity become important near the wall
abruptly at t = 0; for all t > 0, a thin unsteady boundary-layer flow
develops near the wall as the hairpin vortex evolves in the shear flow
above the wall. In view of this "impulsive start" condition, it is

necessary to define a new scaled normal coordinate by

no= 4, (5.30)
2Vt

which takes into account the fact that the boundary layer initially

thickens proportional to t1/2.

In addition, the streamwise velocity
and spanwise velocity gradient in the boundary layer are written

according to,




w

3 = 3%
=U P e]erfn + 0, PR (5.31)
Here the functions v and ¢ are related to the original functions -
and ¢ by,
V=2 Uy, e = 2706 1(n) +oeyn)

and I(n) is the integral of the error function given by,

|

I(n) = [ erfndn = nerfn s b
o] I

(e -1 . (5.33)

The vertical velocity v may be obtained by substitution of equations
(5.32) into the second of equations (5.28) and,
2 U

Vo= 2/ (0y1(n) +epe b Ty U2y (5.34)

The functions v and ¢ are subject to the boundary conditions,

JY b

Y = —— = § = =

n an
for all (£,t) at the wall and at the boundary-layer edge,

i oY _ i a_®=
lim ™ 1im a 1 .,

[ Al and n-+x

for all (g,t).

Under these transformations, the streamwise momentum equation

along the symmetry plane becomes,
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and the coefficients in equation (5.37) are given by,

A
s
]

L

e v v .
¥

> » v 5 ¥ "
L AN

P = 2n+ 4tV

at Y. 93U, 5¢ U

oGty Yot P arat U

Q

S F13 3
= -4¢ T +U.u ™

X

4t U, . U, U

= TGET ) ot YT T UeEr

Here V is given by,

aU R o
V= 6]I(H) +62® + i 3L v o4 U 3Y ;,

3:,‘ X o 3f

The spanwise momentum equation assumes a similar form with,

3T _ 32T 3T 5 aT
—~=——7+P RILE . +
at at n Z 9n Rz Qz i

e AT AT W N R,
. R N S I I O AT AT iy
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and the coefficients in equation (5.41) are given by,

PZ = 2n + 4Vt ,
_ 4t 9% 98 4 Y P
Rz—é-z*{at +Yﬁ+ UwUT;—::)?*' 20162erfn+,<,21} s
. g (2 14
Q, = - 4t (5g+ UV,
36 36 39
.4t ] 1 5e 1 3¢
GZ 57 {*gferfn + 3t Sferf” +U U TQT'ﬁierf” r (5.43)
o ’ 36 38
- ji—Ve]e o+ eferfzn S 4
e at 3
3y 30, o . By i, J
B (ag ¥ —ag—) A (a]+92) - U( T BE) x|

Note that U_, c and 8 in equations (5.37) through (5.43) as well
as their derivatives with respect to ¢ and t, are to be regarded as
known functions of ¢ and t which may be evaluated from equations
(5.8), (5.25) and (5.26); in addition, the terms 3c/%x and 3¢/i3t may

be evaluated by differentiation of equation (5.29), viz.

2 _ 2 e 2dx2/dt (5.44)
ax  noH{x-x_*m)Z * 3t F?IT§?§:1777 > .

where dxl/dt is the speed (in the + x direction) of the two-dimen-
sional part of the vortex. For a given value of ¢ and location x.(tL
equation (5.29) may be solved for x and the derivatives in equation
(5.44) may be computed.

The boundary conditions for equations (5.37) and (5.41) are
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;:E In addition, as x » + « (¢g++1), the solution of the boundary-layer

EE equations develops independently of the solution for |x|<= ({71-1).
It may be verified from equations (5.8), (5.11), (5.25) and (5.26)

;E that U_, i and 6, are all O(x'3) as |x|-~; it also follows from

2

4

equations (5.44) that the gradients %£/3x and 3r/3t are O(x'2) as

LY

fx|+e. Consequently it is easily confirmed that the limiting values

’

.

v

of the coefficients in equations (5.39) and (5.43) are, -

LA AN

P =P =2n , Q =Q =0 ,

X© A&l X 2x N
(5.46) :

Gx«x: = Rxm = 4tA'|(t) ’ sz = -RZ“’ = 4tB](t) Y :
~

Y

-

where A](t) and B](t) are defined by,

e 1 da . 2y Yh
Al(t)‘};’“w’laf S A AL
(5.47)
i 1B _ 2
Bl =i a7l e s

Therefore if the solution for U{7,n,t) and :(7,,t) at ¢ = + 1
(x»>+=) is denoted by U and ~, then these functions satisfy the
equations
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N

: and the boundary conditions (5.45)

) The boundary-layer flow was assumed to develop abruptly from N

‘ rest corresponding to the insertion of the hairpin vortex in the ESE

; shear flow at t = 0. As t - 0+, the 1imiting form of enuations ész

_ (5.37), (5.41) and (5.48) is, .'

‘. it % ) Tiu’ * 2n g_n i

, (5.49) o

; i i n i

. ~

i and the solution of these equations satisfying conditions (5.45) is, E;'

) o

U=1=erfn . (5.50)

! 5.5 Numerical Methods

. The numerical methods used in this study are similar to those ;:i
described by Ersoy and Walker (1985b). Starting from an initial h;}
location, the evolution of the hairpin vortex was computed using the l§€
methods outlined in Chapter 4; the results of this calculation were
stored on disk and a boundary-layer integration using a Crank- ji;

. Nicolson method (Ersoy and Walker, 1985b) was initiated. The initial "

,: boundary-layer flow is described by equations (5.50)) and to advance »;:

'E the solution in time the following procedure was used. The solution ?i

' at : = + 1 was first advanced one time step by advancing the solution 2:
of equations (5.48); with the solution at - = - 1 known for a given ;f;
value of t, the solution of equations (5.37) and (f . 41) was then 2:2

2
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é advanced one time step. Central difference approximations were used :ié
3 for the spatial derivatives and the method is second order accurate 53'
'J both in space and time. The numerical method for the interior cal- f;;
% culation (-1<g<1) is implicit and at a given time step iteration is ig;
i required; typically 15 to 20 sweeps of the mesh were needed at each E:i
) time step to obtain convergence which was deemed to have occurred 3:
:5 when two successive iterates for U and 7 agreed to within four sig- ﬁ;-
A nificant figures at each mesh point. A typical time step used was ii
. st = 0.0002 and typical spatial mesh sizes were h; = 0.01 in the - ;&:f
fE direction and h, = 0.05 in the n direction. The last of conditions E;E
1? (5.45) were applied at a value of n_ = 2 = 6 as an approximation and l;¥
'f this was believed to be large enough to ensure that there would be gi%
3 no significant change in the solution with a larger value of :. Con- E?i
sequently in a typical calculation there were 201 mesh points in the ;f'
¢ direction and 121 in the direction normal to the wall; these mesh :ﬁi
sizes are believed to be small enough to ensure good accuracy. ;if
The results of the computations are subsequently depicted Li:
; through three types of plots, namely: (a) instantaneous Streamline j?
S plots in the xu plane, (b) plots of lines of constant = in the x- ;Z
] plane and (c) limiting surface streamlines in the xz plane near the \;;
; symmetry plane of the hairpin vortex at z = 0. The methods used to :j&
3 plot these results are described in detail by Ersoy and Walker (1985b)
Y but will be discussed briefly here. 1:;
E As a result of a completed boundary-layer integration, values of -?f
E u and v are known at each time step at each point in a rectangular if:
s <
. "
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mesh covering the xr plane. In general, the equations of an

instantaneous streamline are given by,

dx _dy _dz _ 4 g
; ; " d- (5.51)
where - is a parameter measuring distance along a given streamline.

A numerical approximation to the first of equations (5.51) is

v

X - X =Uly , r ~=-orn_=

]
L , (5.52)
° 2t

where (uo,v ) are the ‘nstantaneous velocities at an arbitrary

0
initial p.int (xo,no) at fixed time t. By selecting a step - :, the
streamline through the initial point may be traced in the x- plane at
time t; since the spatial mesh sizes h] and h2 are small it is
possible to compute accurate values of u and v at any point in the
plane using two-dimensional linear interpolation. In order to ensure

a smooth tracing, the step length a- was selected so that /Ersoy and

Walker, (1985b),

(u2+v?) ao- = 0.005 , (5.53)

at any stage.

The 1ines of constant & were obtained in a standard way. The
third type of plot which will be described are 1imiting surface
streamlines in the xz plane; at locations close to the symmetry

plane, the u and w velocity components are given by,
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u = ulx,y,t) +0(z2) , w=zs(x,y,t) + ¢(z3), (5.54)

where the right sides of equations (5.54) are the symmetry plane
quantities computed in this study. For small z, equations (5.54)
provide a reasonable description of the flow field near the sym-
metry plane. Near the surface, v is 0(y?) while u and w are 9(y):

thus for small y the streamlines are described apnroximately by,

NQ
DN

:du_X=dT- , y<<l (5.55)

where 7' is a variable measuring distance along a streamline. In the
present study, the limiting streamlines were plotted using values of
uand 8 at y = h2 = 0.05,wh1ch is one mesh length off the surface.
Note that it is not possible to clearly delineate a specific range of
values of z for which equations (5.54) give a good representation

of the velocity components; the maximum value of z used here was

z = 0.1. It is also worthwhile to mention that an alternate repre-
sentation of the limiting surface streamlines is to formally take the

limit as y » 0 in equation (5.55) to obtain,

dz _ . e(x,y.t) -
I - 2 Tim UT??%TET- z f(x,t) , (5.56)
y-+0
where
/oy
) = gyl 0 (5.57)
Yy y=0
Integration of eguation (5.56) yields, ;%
\I
\“*
l:’

L
o
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X
z =z exp {[ f(g,t)der (5.58)
X
0

where X and z, are constants. In principle the limiting surface
streamlines may be plotted using equation (5.58); in the present
study, it was convenient to use the same methods that were used to
plot the streamlines on the symmetry plane to plot the limiting sur-

face streamlines (using equations (5.55)).

5.6 Calculated Results

The computation of the developing boundary-layer flow on the
symmetry plane is very time consuming and each case involved on the
order of several days on a VAX 8300. The problem is complicated by
the fact that as the hairpin moves, the regions of intense variation
in the 6 and U_ distributions constantly shift with time and con-
siderable effort had to be expended in finding a suitable transfor-
mation of the form (5.29) which would reflect the vortex behavior in
a specific case. In the calculations that will be reported,there
were 201 mesh points in the ¢ direction (h] = 0.01) and 121 points
in the n direction (h2 = 0.05). Even with the large number of points
in the ¢ direction, it was determined that unless the transformation
(5.29) was adjusted to a specific case, that "wiggles" would develop
in the computed results as the vortex began to severly deform in the
shear flow; these "wiggles" were thought to be a clear indication of
an inadequate streamwise mesh spacing in particular regions of the

flow. Due to the considerable difficulties that were experienced in
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calculating the boundary-layer evolution, a limited number of
reliable results were obtained in the computational time available

and results will be reported here for only one case. This situa-

tion corresponds to Case 6 of Section 4.5 and consists of a hairpin

vortex convected in a shear flow above a boundary-layer flow near a
wall. The cases involving a vortex deforming in an irrotational flow
were not considered interesting and most of the effort here was
directed toward the situations involving vortices in shear. The time-
step used in this calculation was At = 0.0002. In the early stages
of the integration, the difference equations were solved with
successive-over-relaxation iterative methods; at later times, it was
found that under-relaxation was more effective in obtaining a
converged solution of the difference equations at each time step.
The flow development at t = 0.001 is depicted in Figures 5.7.
In these graphs (and all subsequent graphs) the polygonal symbol at
the top of the graph denotes the instantaneous streamwise location
of the hairpin head on the symmetry plane; the triangle denotes the
streamwise location of the undisturbed two-dimensional vortex. In
Figure 5.7(a) the arrows denote the instantaneous direction of flow
in the symmetry plane where it may be observed that the flow is
initially almost symmetric. In Figure 5.7(b) the contours of con-
stant 6 are plotted; positive values of ¢ mean that the local span-
wise flow is away from the symmetry plane while negative values of &
show that the vortex is inducing a fairly strong inflow toward the
symmetry plane. The limiting surface streamlines in the xz plane
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E% are shown in Figure 5.7(c) where again, the flow direction is Ei,
f; indicated by arrows. E§
. A further stage of development is shown in Figures 5.8 at D
:r t = 0.01. It may be observed that a region of three-dimensional Ei
k. flow separation is now present; there are two stagnation points, g&
) labelled S1 and S2, associated with this region. Fluid particles NN
Eé in the region bounded by the limiting streamlines through S1 and S2 E;
Zﬁ spiral toward a focus at F1 where the instantaneous flow is leaving Ei
" the symmetry plane. In Figure 5.8(b), it may be observed that a e
ff new feature in the constant 6 contours has developed in the form of &%'
;{ a pocket of positive 6 near the wall. The increasingly positive 52
3 values of 6 near the center of this region indicate increasingly iﬁ
Si strengthening outflows from the symmetry plane; the center of this gz
E: region is close to the focus F1 in Figure 5.8(a). The limiting :E
): surface streamlines at t = 0.01 are shown in Figure 5.8(c) where it e
2 may be observed that 1imiting streamlines through S1 and S2 divide ﬁ;
E the plot into three regions. In the right of S1, the flow first i}-
! moves toward the symmetry plane but is then deflected away toward j’
~; the limiting streamline through S1. To the left of S2 the flow Z;E
; is toward the symmetry plane while between S2 and S1 the surface ;;
flow reverses direction. '.
. As time increases the region of three-dimensional separation t}§
X increases in extent in the streamwise direction as may be seen in ﬂ;ﬁ
. Figure 5.9(a) at t = 0.02; the stagnation point S1 remains almost éé.
. fixed relative to the moving hairpin vortex while the stagnation :E:
: b
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P

point S2 moves progressively downstream to the left. It may also
be observed (in Figure 5.9(b)) that the region of positive outflow
from the symmetry plane near the wall is expanding. The expanding
region of recirculating flow is also apparent from the relative
position of the stagnation points in the surface streamlines at

t =0.02 in Figure 5.9(c).

The continuation of the trends observed in connection with
Figures 5.9 may be observed in Figures 5.10 at t = 0.03. Note that
an intense variation in the velocity field is beginning to develop
to the right of the region of separation (Figure 5.10(a)) and also
that the streamlines to the right of S1 are beginning to 1ift away
from the wall (in response to the development of the secondary hair-
pin heads in the spanwise direction). The next stage of development
at t = 0.04 is shown in Figures 5.11; with the arrival of the trail-
ing Tegs of the hairpin, the streamlines that were observed to have
been 1ifting in Figure 5.10(a) are now seen to be accelerated in
Figure 5.11(a) to the right of S1. Note that the region of recircu-
lating flow has expanded to the extent that the stagnation point S2
has now moved out of the picture to the left in Figures 5.11(a) and
5.11(c). 1In addition the surface streamlines near S1 are essentially
tangential to the symmetry plane.

The flow development at t = 0.05 is depicted in Figures 5.12;
the region of recirculation, depicted in Figure 5.12(a), has con-
tinued to expand and has grown substantially in the direction

normal to the wall. The intense variation in the flow field to the
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right of S1 is evident from the relative closeness of the stream-
lines there. It may also be observed in Figure 5.12(b) that a pro-
nounced hump has developed in the constant 6 contours to the left of
S1; an additional 1ifting in these contours may be observed to the
right of S1.

The development at t = C.06 is plotted in Figures 5.13. It
may be observed in Figure 5.13(a) that the recirculating region has
extended out of the plot window in a direction normal to the wall.

The streamlines to the right of Sl are very close to the wall and it

may be observed from Figure 5.13(c) that at this stage (at least)

there are no stagnation points to the right of S1. It may also be

seen that the kink in the constant 6 contours which was noted in

s m_e_y
""C
S %

Figure 5.12(b) has now extended all the way across the boundary

voR ¥
2.1
-\(\"

layer. Consequently there is a narrow band of outflow from the

)

symmetry plane which extends all the way to the inviscid region and

28

which forms in response to the development of a small region of

AN

positive 6_ (c.f Figure 5.3).

3

The last stage of the present calculations is shown in Figures

v
A SR
" NS

5.14 at t = 0.07. At this point, there are now two additional

% % "‘ _" Al
AN

stagnation points S3 and S4 which may be observed in Figures 5.14(a)
and 5.14(c). The limiting streamlines through S3 and S4 bound a

e

3
 }

region of strong outflow from the wall which is fed by spanwise flow

r:'

toward the symmetry plane. Note that an additional small region of
positive o may be observed to the right of S1 in Figure 5.14(b).

MR e )

R
';',4."-.".'.1.'.

It may be observed in Figure 5.14(b) that "wiggles" are starting
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to develop in the constant 6 contours and this is an indication that

e
;3’ the numerical mesh is becoming inadequate. At this stage the hair-

E; pin vortex legs are rather close to the wall (c.f. Figure 4.8) and

f the inviscid velocity distributions are fairly complex (c.f. Figures

3& 5.1 and 5.3). By t = 0.07, the legs of the vortex are moving

W fairly close to the wall and the inviscid calculation is nearing the

é% end of its range of validity. For these reasons, the boundary-layer

52 calculation was not extended much beyond t = 0.07. However it

{. may be inferred from the present results that strong boundary-layer

:3 growth is occuring as a consequence of the imposed pressure distri-

c: butions due to the moving hairpin vortex. This point is illustrated

55 in Figure 5.15 where the temporal evolution of the displacement

R thickness,

if

o s* = z/fof (1-U)dn (5.59) s

¥ 0 KN
. o
j on the symmetry plane is plotted. The initial hump that begins to <o

. develop and grow in Figure 5.14 is due to the expanding region of fﬁ{
> recirculating flow that develops on the symmetry plane at a fairly f?l
K early stage in the integrations. The second and third humps that :é?
" develop at a later stage are due to the approach of the legs to the

i: wall and the formation of the secondary spanwise hairpins

i respectively.

g

\ 5.7 Conclusions
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Figure 5.15 - Tempnoral development of displacement thickness.
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In this chapter, a method has been described for the computa-

¢
[

o tion of the viscous response of a boundary layer to a moving and
‘g developing hairpin vortex in a shear flow. It is evident that the

i moving hairpin vortex gives rise to a very complex unsteady pressure

W field which in turn drives a complicated unsteady boundary-layer

A flow. The present results describe only the development of this

‘;; viscous flow on the symmetry plane but it is evident that one con-

A
4 'y "l ""ﬂ"', P

sequence of the evolving flow is that strong outward growth of the

o boundary-layer flow occurs. It is reasonable to expect that as the “J

thickening boundary-layer flow penetrates the cross flow in the

5

: inviscid region above the wall, a roll-over into a new secondary

i

. hairpin vortex will occur. This speculation is confirmed by the

]

v

r
A

experimental observations of Acarlar and Smith (1984, 1987a, 1987b).
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CHAPTER 6
CONCLUSIONS

In the present study, several aspects of the dynamics of hair-

pin vortices have been examined from a theoretical standpoint. The

results of this study generally support the suggestions of the

experimental studies of Acarlar and Smith (1984, 1987a, 1987b) and

the idea that hairpin vortices are a basic building block in turbu-

lent boundary-layer flows. Specific conclusions are as follows:

(1) Hairpin vortices are streak creators.

This is borne out by the simulations described in Chater 4

r .
3

3

a
"
-

as well as the experiments of Acarlar and Smith.

(2) Hairpin vortices in a shear flow develop secondary hair-

pin vortices which spread in the spanwise direction.

This was suggested by the experiments of Acarlar and Smith and

is confirmed by the calculations in Chapter 4; this is a process of

regeneration wherein a hairpin vortex can multiply itself in the

spanwise direction.

(3) Hairpin vortices induce a pressure gradient which evokes an

eruptive response from the flow near the wall and leads to the

creation of secondary hairpins through a strong viscous-inviscid

interaction.

This phenomenon was clearly shown in the experiments of Acarlar

and Smith in a variety of situations and is supported by the viscous

LR ]

7
((.4

calculations described in Chapter 5. This process is regenerative

’\ '\ vy
s‘

b~

and offers a plausible explanation as to how new vorticity from the

P
)
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region near the wall is continually introduced into the outer layer

of a turbulent boundary layer.

(4)

Pairs of hairpin vortices act to reinforce one another
In Chapter 4, it was demonstrated that two hairpin vor-
tices in proximity to one another evolve in such a way that they

intertwine and ultimately give the appearance of a single hairpin

y vortex. This phenomenon provides a possible explanation for the E;
: phenomenon of streak reinforcement described by Smith (1984). 1o ?“
o understand this mechanism, assume that a hairpin vortex moves above Egg‘
: a wall; as it does so, a streak occurs near the wall. After the flow Eﬁ:

Y

5

near the wall is exposed to the pressure gradient induced by the

moving vortex for a sufficient period of time, an eruption occurs and Y

R A A AR
[}

a secondary hairpin vortex is created in a strong viscous-inviscid Rt

interaction. As the eruption occurs the streak is obliterated near

i the point of ejection and at this stage there are two hairpin vor- ;??
; tices within the flow. In view of the present results, the secondary Eég
: and parent hairpin vortex would be expected to intertwine and rein- 33%
. force one another. The next observable phase of the process should ;:E
be the appearance of a new streak slightly downstream of the point E;;
of eruption as the pair of hairpins create a streak below them. T
i The present study is by no means complete and there is a EE;P
: variety of research directions that couid be pursued in the future. Ef;
| First, the present vortex calculation method is believed to pro- iEP‘
duce very accurate results for the motion of vortices having small igb_
; R
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o
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cores. However the calculation method is based on Moore's (1972) ﬁk.
model of the vortex core which is probably not general enough to N
describe all of the vortex motions which are of interest in connec- EE
tion with the turbulent boundary layer. The theoretical model Sﬁ
developed by Callegari and Ting (1978) for closed vortex loops is =
complex but is believed to be on firmer ground than all prior vortex ES;
calculation methods; this approach needs to be developed and extended glf
to the types of vortices (of infinite extent) of interest in this X
study. In the second place, the present calculations have shown 3&2
that hairpin vortices evolve in complex ways which are not easily F%;
predicted a priori on an intuitive basis; there is therefore a need ZE;'
to carry out further numerical integrations to develop an improved isé(
understanding of how hairpin vortices react with one another and gi.
also surface topography near walls. The present calculation method j}(;
is fairly time consuming however and there is a need to develop new Eii
algorithmic approaches which will permit the accurate calculation iﬁE‘
the evolution of interacting vortices in three dimensions more jf;'
efficiently. In the third place, there is a need to develop j}{l
approaches which will permit the efficient calculation and predic- iﬁz
tion of physical situations where vortex cores merge locally; in fﬁ
the present study, it was necessary to terminate the computation of E:f
two interacting hairpin vortices when the two vortex cores touched ;i'
(figure 4.25). ':
A fourth area of needed study is the calculation of the full _.\
0N
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;Q unsteady three-dimensional boundary layer under a moving hairpin -3:@
R
n vortex. In the present study, the boundary-layer calculations N
" were restricted to the symmetry plane of the moving hairpin vortex; %S\:
§ AL,
) these calculations do suggest that the boundary-layer flow will 3
) .
¥ .
" become eruptive on the symmetry plane. However it is entirely A
o possible that the boundary-layer flow will evolve toward inter- -
\ action first at locations off the symmetry plane. In order to
N .
] completely understand the viscous response at a wall to a moving R
o hairpin vortex, the full boundary-layer problem must be addressed. :E
R Finally, the eruptive phase of the process, that is observed in ;;_
& _.-,;
3 experiments to lead to the creation of secondary hairpins, is of R
3 considerable interest. In order to compute such viscous-inviscid :ﬁi
N
interactions, it will be necessary to develop new algorithmic \$:
s
approaches that will permit the calculation of a boundary-layer N
» flow interacting strongly with an outer inviscid flow. :Eh
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APPENDIX A

In this appendix, it will be demonstrated that the anomolous
behavior of the integrand in Moore's (1972) method which is depicted

in Figure 2.3 for the circular ring may be associated with

-‘I

inaccuracy in the numerical differentiation. For a circular vortex

. ,-,

A

. o
. r

ring, the position vector to any point on the ring may be written,

e

AN
P

i

i(s,t) = (Rcosns , Rsinns , Zr) » =l<s<1 (A.1)

<

(\

h ]

g
:".‘

where R = R(t), Z, = Zr(t) are the dimensionless ring radius and

S

normal distance from the wall. The first and second derivatives are,

éé-= n{-Rsinns , Rcosns , 0} , (A.2)

32

57 = n2{-Rcosns , -Rsinms , 0} . (A.3)

If io denotes the position vector to a point at s = S, On the vortex

where the >clf-induced velocity of the vortex is to be evaluated,

then

io - X = {R(c05nso - €OosTS) , R(sinnso - sinns) , 0} . (A.4)
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Suppose now that as a result of errors incurred in the numerical
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f' differentiation, errors €y and e, occur in the evaluation of 3X/3s I
V" N e d I.\.’
o and 32X|3s which have the following simple form, =
; %
Y >
3 X . y
g 22 = (g-g,) {-Rsinms , Rcosms, 0} , (A.5) )
L] Jn
:;.. 2-)2 .:::;.
:: g—sz- = (nz-ez) {-Rcosms , -Rsinns , 0} . (A.6) 'ﬁ_*;
K, ~
:\o' ::'J'
\. C“ 3

It is readily shown that,

=
ke
) S.

.
hy ]
-

L > > N
W - (X _=X) (m-e4)R2(1-cosmas) " Ay
h X 0 - 1
¢ 3 X T D22 7z ¢ (A.7) &
; {IXO-X|2+u2} {2R2(1-cosmas)+u2} Ny
o N
* where As = $-S, and k is a unit vector in the z direction. Using o
' equation (2.13), it may be shown that, N
e
: a} azi ) RZ(AS)Z(n-e])(nz-ez) . :?:
sg' X ‘a—s—z' P(S) = 3/2 Kk (A'8) N
2(R%(2s)2(m-eq)2 +u?} 3
': The Taylor series expansion of coswas is i&i
" e
b o
’ cosmas = 1 - %ﬁ (nas)? + %] (WAS)4 + ey (A.9) -
g :iﬂ
: o
: and assuming that u2<<n2R2as? and that €] and e, are small, it may ;t;
] .\'\-
> shown that the difference I between equations (A.7) and (A.9) is, ff
‘, o~
] "-:‘
s 1 €2\ . n2as =
:: I - PRosw ("3814’ T) + m— + - (A.10) :'J'._‘:
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It may be observed from equation (A.10) that if €1 €2 © 0,

I-0 as as+0 (A.11)

which is the required behavior. On the other hand, if €1 €9 t 0,

it may be observed that a large error for small As will occur in the
evaluation of the integrand. Note that for €10 (and ezgp), the
sign of the first term in equation (A.10) is different from the
second term and the type of behavior depicted in Figure 2.3 will
occur. It should be remarked that this analysis is heuristic and a
complete error analysis was not carried out; the analysis in this
Appendix is orly an indication of the potential problems that may

occur with Moore's (1972) method.
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APPENDIX B

In this appendix, the details of the expansion of the integrand
R(s.so) in equation (2.18) are described. If So denotes the

location on the vortex where the self-induced velocity is being

s
vy
P s

evaluated and s denotes any other location on the vortex, a Taylor

--'l
LS

series expansion of the position vector about So is,

2
LY

<

f

ox!
7

r
[

X(s,t) = X(s»t) + (s-s )(§§)°

. ..ru.-g.'.-“.- :
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. % % "

< \3
(s So) 33X

toar o Gede t
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where the subscript o denotes that the derivative is evaluated at

~
. ..Q
-
ot
[SekS
.
.
.
s
MY
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S =53 letting io denote i(so,t) it follows that

s

USRI

~  (s-s )2, ’, (s-5,)° -

= (sesglhy - —r® Xy - —gro— k- -e-s (8.2)

~ & e 1] .
.:\‘\.\ Sl
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LY

where a prime is used here to denote differentiation with respect to

s. A similar expansion for 3X/3s is,

- (S'So)2+
+ (S‘So)xg + 2' Xcl;' + e

and consequently it is easily shown that,
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s X (xo X) 2—(5-50) Xo X Xg + 3 (s-so) Xo X X3 S

_ (s-s,)* - . T
t o (3K X KO+ 20 x X'} 4+ ---- . (B.4)

' In addition, 3

v

e
LT
D

» 3 .
NN
Ps

v v e -

> -+ > > -
- 2 = - 2y ' - Iy . u
lXo X| (s So) XO X0 + (s So) Xo X

l'.’.{'.lt
LA

(S-So)“ - > +> -+
w0 S L SO G I (B.5)

2?‘-%\

",'{I{ l'.l.
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XA

and the binomial expansion yields,

T I T
Pl
AT T 14

X -* 242 -3/2 = _3/2 - il. - 3+' . *n
{lxo X|2+u?} o R 55 {(s so) Xg * Xo

1

)

» (S'So)q > > > >
; —7 — (3X5 + X5+ 4X) - X3')Y + ----1,(B.6)
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where,

. "-‘.\

\I‘. -.' ." ..' ;" e
[h -: [

Q
4

= (S-so)z(ic',)2 + w2 (8.7)

1
;l
ey,

"4.'.'-

Il'
A

E The expansion (B.6) is valid for (s-so) sufficiently small.

A
A

An expression for the integrand for small (s-so) given by
equation (2.18) may now be obtained using equations (B.4) and (B.6); Sf-

the result is, , e
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R(S»So) = 03(5-50)3 + D4(s-so)“ + e,

where 53 and 54 are defined by,
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